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Abstract—In this paper, we propose an explainable digital twin- based web platform for battery health
prediction and detection in electric vehicles using machine learning and deep learning algorithms. The
proposed system facilitates predictive maintenance by estimating the State of Health and detecting
abnormalities through voltage, current, temperature, internal resistance, and cycle numbers. The system has
two different users. The  users are provided real-time predictions through a secure mechanism. The
administrators are provided functionalities to manage the datasets and model training and assessment through
dashboards. The proposed system has implemented Random Forest Classifier, Support Vector Machine
Classifier, Decision Tree Classifier, and Long Short-Term Memory models. The performances have been
calculated using R2 score and Mean Absolute Error. The proposed system indicates that the model performs
better for the prediction of the time series battery health. The predictions have been explained using the
SHapley Additive exPlanations method. The proposed web platform has been developed using the Django
framework and has the capability to facilitate scalability and security for intelligent battery health.

Keywords: Digital Twin, Battery Health Prediction, Explainable Artificial Intelligence, Machine Learning,
Deep Learning, Predictive Maintenance.

I. INTRODUCTION

The rapid growth of electric vehicles (EVs) and the global shift toward sustainable transportation have
significantly increased the demand for intelligent battery health monitoring and predictive maintenance
solutions [1]. Lithium-ion batteries serve as the core energy storage component in EVs and directly influence
vehicle performance, safety, operating cost, and overall lifespan. However, battery degradation is an inevitable
process caused by repeated charge—discharge cycles, temperature variations, high current loads, and aging
effects [2]. Traditional battery management systems (BMS) primarily rely on fixed threshold-based monitoring
of voltage, current, and temperature, which often fails to capture complex and nonlinear degradation patterns
occurring under real-world operating conditions. Recent advancements in data analytics, machine learning, and
deep learning have opened new possibilities for intelligent battery diagnostics and predictive maintenance [3].

When combined with advanced analytical models, this data can be transformed into actionable insights
for accurate estimation of battery State of Health (SoH) and early detection of abnormal operating conditions
[4]. Data-driven approaches enable continuous learning from historical and real-time data, allowing systems to
adapt to diverse usage patterns and environmental conditions more effectively than traditional rule-based
methods. The integration of digital twin technology further enhances the capabilities of intelligent battery
monitoring systems. A digital twin represents a virtual replica of the physical battery system that continuously
synchronizes with real-world sensor data [5]. This virtual model enables real-time monitoring, simulation, and
prediction of battery behavior under varying conditions. By analyzing both current and historical data, digital
twins support early identification of degradation trends, fault diagnosis, and predictive maintenance planning.
However, many existing digital twin and machine learning solutions operate as black-box models, limiting their
interpretability and reducing user trust, especially in safety-critical applications such as electric vehicles [6].

To address these challenges, explainable artificial intelligence (XAI) has emerged as a key research
direction. XAl techniques provide transparency into model predictions by explaining how individual input
features influence the output [7]. This interpretability is essential for validating predictions, improving user
confidence, and supporting informed decision-making by engineers and system operators. By combining
explainable Al with digital twin frameworks, battery health monitoring systems can deliver not only accurate
predictions but also meaningful insights into the underlying causes of degradation. This research introduces an
explainable digital twin—based web platform for battery health prediction and defect detection in electric
vehicles. The proposed framework integrates machine learning and deep learning models with explainable Al
techniques to provide accurate, transparent, and scalable battery diagnostics. The system is designed to support
predictive maintenance, improve battery reliability, and reduce operational costs, contributing to sustainable
electric vehicle management.

2. Literature REVIEW
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The rapid global shift towards electric mobility has brought forth a growing emphasis on the reliability,
safety, and sustainability of energy storage systems. Among these, lithium-ion batteries remain the core
technology driving the electric vehicle (EV) revolution. The performance, longevity, and operational safety of
these batteries directly determine vehicle efficiency, cost, and user confidence. Consequently, the ability to
predict the battery’s state of health (SOH) and state of charge (SOC) using advanced machine learning and
explainable artificial intelligence (XAI) frameworks has become a pivotal research direction. Traditional
analytical models based on electrochemical and equivalent circuit methods, while valuable, often fail to capture
the complex nonlinear degradation dynamics inherent to lithium-ion batteries. To address this, researchers have
increasingly adopted data-driven techniques leveraging machine learning (ML) and deep learning (DL)
paradigms. Among foundational machine learning algorithms, decision tree—based models such as those
introduced by Quinlan [8] Support Vector Machines (SVMs), pioneered by Cortes and Vapnik [7], have also
been extensively applied for battery fault classification and remaining useful life estimation owing to their high
generalization capability. Krizhevsky et al. [4] demonstrated the power of convolutional neural networks (CNN5s)
for hierarchical feature extraction. Hochreiter and Schmidhuber’s Long Short-Term Memory (LSTM) networks
[2] have been particularly influential in modeling sequential degradation data, allowing for effective prediction
of battery SOH under dynamic load conditions [14]. Zhang and Zhao [14] highlighted the increasing application
of deep learning in battery degradation and health estimation. Their studies demonstrated how neural networks
outperform traditional regression-based methods by capturing the high-dimensional nonlinearities of battery
dynamics.

From a computational perspective, the deployment of large-scale predictive models has been facilitated
by powerful open-source libraries such as TensorFlow [12], Keras [11], and Scikit-learn [10]. These frameworks
provide scalable environments for developing and deploying machine learning pipelines capable of real-time
inference. Optimization algorithms such as Adam, proposed by Kingma and Ba [9], ensure faster convergence in
deep neural networks, particularly when processing complex battery sensor data. Moreover, the OpenCV library
[5] plays an essential role in preprocessing and visualizing data streams from various IoT sensors integrated
within the digital twin architecture. Goodfellow et al. [6] and Abadi et al. [12] established the theoretical and
infrastructural foundations for modern deep learning, offering flexible frameworks for large-scale
experimentation. These contributions underpin most of today’s predictive maintenance and digital twin
applications, facilitating the transition from academic prototypes to industrial-grade systems. Collectively, the
literature reveals a clear trajectory towards integrating explainable deep learning within digital twin ecosystems
for intelligent battery management. Early works on traditional ML models [1], [7], [8] provided interpretability
but lacked scalability, whereas recent deep learning—based approaches [2], [4], [14], offer superior accuracy but
limited transparency.

In summary, the reviewed literature underscores a paradigm shift from purely predictive to explainable
predictive models in battery management systems. The convergence of machine learning, deep learning,
explainable Al, and digital twin technologies is paving the way for more transparent, adaptive, and intelligent
EV ecosystems. The proposed Model seeks to address these gaps by developing a transparent, data-driven
framework that combines the predictive power ofdeep neural networks with the interpretability of I, ensuring
safer and smarter EV battery management in the evolving landscape of sustainable transportation.

3. Methodology

This research presents an explainable digital twin-based framework for accurate battery health prediction in
electric vehicles. The proposed system architecture is composed of multiple interconnected layers, including
data acquisition, data preprocessing, predictive modeling, explainability, and user interaction. Real-time and
historical battery data are continuously collected and processed to ensure reliability and accuracy. Advanced
machine learning models are employed to predict battery health and identify potential defects at an early stage.
Explainable Al techniques are integrated to enhance transparency and trust in predictions. Overall, the
framework ensures scalability, security, and interpretability, supporting predictive maintenance and intelligent
battery management systems.
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Fig.1.Architecture of the proposed system

The Physical Environment represents the: Data Collection (Raw Data). Within the Digital Environment, we
observe steps like: Data Preprocessing and Feature Engineering, Dataset Partitioning, Model Training and
Prediction, Model Evaluation and Selection, Explainability Integration and Decision Support.

a. Data Collection

The Data Collection Layer acquires continuous operational data from electric vehicle battery systems
through embedded sensors and monitoring units. Key parameters include battery voltage, current, temperature,
internal resistance, state of charge, and charge— discharge cycle count. These parameters capture the electrical,
thermal, and aging characteristics of lithium-ion batteries under real world operating conditions.

b. Data Preprocessing and Feature Engineering

Raw sensor data may contain noise, missing values, and scale inconsistencies that negatively impact
model performance. Therefore, preprocessing operations are applied, including noise filtering, outlier removal,
interpolation for missing values, normalization, and feature scaling. Feature engineering is performed to derive
informative indicators such as average discharge rate, temperature gradients, and cumulative energy throughput.

c. Dataset Partitioning

The processed dataset is divided into training and testing subsets, typically using an 80/20 split, to
ensure unbiased evaluation of predictive performance. Cross-validation techniques are applied during training
to enhance model robustness and reduce overfitting, enabling reliable generalization to unseen operating
conditions.
d. Model Training and Prediction

Multiple machine learning and deep learning models are implemented for battery health prediction and
defect detection. Random Forest, Support Vector Machine, and Decision Tree models are employed to capture
nonlinear relationships between battery parameters and degradation indicators. In addition, a Long Short-Term
Memory (LSTM) network is used to model temporal dependencies in sequential charge—discharge data and
long-term aging behavior.
e. Model Evaluation and Selection

Model performance is evaluated using quantitative metrics such as R? score and Mean Absolute Error.
Experimental evaluation demonstrates that the LSTM model achieves superior accuracy and robustness for time-
series battery data due to its ability to capture temporal degradation trends.

f. Explainability Integration and Decision Support

To enhance transparency and trust, SHapley Additive exPlanations (SHAP) are integrated to quantify
the contribution of each input feature to the predicted battery health outcome. SHAP analysis highlights
influential degradation factors such as temperature, internal resistance, and cycle count, enabling clear
interpretation of model predictions.

4. Results and Discussion

The proposed explainable digital twin—based framework was evaluated using a simulated yet realistic
electric vehicle battery dataset designed to reflect real-world operating conditions, as illustrated in Figure 1. The
evaluation focused on assessing prediction accuracy, system reliability, computational efficiency, and usability
of the platform. Each component of the framework from data preprocessing and predictive modeling to
explainability and web-based visualization was systematically tested to validate overall performance. The
usability of the system was evaluated through simulated user interaction. Results indicated that the majority of
users found the superior robustness for time-series battery health prediction. Data preprocessing and model
inference were executed efficiently, enabling a real-time battery health prediction. The backend architecture
ensured secure data handling and seamless communication between the prediction engine and user interface.
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Figure 3. (a) Predict Battery State  (b) Performance Comparison of Prediction Models

From Fig. (a) and (b) it can be observed that the LSTM model consistently outperforms other models by
achieving the highest R? Score and the lowest MAE and RMSE values. Random Forest demonstrates strong
ensemble performance, while SVM and Decision Tree show comparatively lower accuracy. These results confirm
the suitability of deep learning models for precise battery health prediction.

Table 4.1. Performance Comparison of Battery Health Prediction Models

Model R? Score] MAE | RMSE Remarks
Decision Tree |  0.87 [0.062 [0.081 |Simple model, prone to overfitting.
SVM 0.90 |0.048 |0.065 [Stable performance, moderate accuracy
Random Forest| 0.92 |0.036 [0.052 |Good generalization, robust
LSTM 0.94 10.028 |10.041 [Best performance for time- series data

From Table 4.1, it is evident that the LSTM model outperforms the traditional machine learning
models in terms of higher R? Score and lower error metrics. This highlights the effectiveness of deep learning
for time-series battery health prediction under dynamic operating conditions. A combined performance
comparison of all evaluated models using R? Score, MAE, and RMSE is illustrated in Fig. 4.1. This
representation enables a holistic understanding of both accuracy and error trends across different prediction
techniques.
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Figure. SHAP Explanation Results

The integration of explainable Al further enhances transparency and trust, making the system suitable
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for safety-critical electric vehicle applications. Overall, the results demonstrate that the proposed explainable
digital twin framework effectively improves prediction accuracy, A unified approach to interpreting model
predictions, interpretability, and operational efficiency, supporting intelligent battery health monitoring and
sustainable electric vehicle. To further analyze model behavior, SHapley Additive exPlanations (SHAP)were
applied to interpret prediction outcomes. Feature importance analysis revealed that battery temperature, internal
resistance, and cycle count were the most influential factors contributing to battery degradation prediction,
followed by voltage and current variations. These findings align with known electrochemical aging mechanisms
validating the reliability of the explainable Al integration. The explainability layer provided transparent insights
into model decisions, addressing the limitations of black-box deep learning approaches.

V. Conclusion Future Enhancement

The Battery Health Prediction and Defect Detection System is an intelligent and scalable method of
proactive battery health maintenance. It uses machine learning algorithms and deep learning models to make
predictions about the State of Health (SoH) of batteries and make predictions about potential degradation. The
system uses machine learning algorithms such as Random Forest, LSTM, SVM, and Decision Trees to make
predictions based on critical parameters of battery health, including voltage, current, temperature, internal
resistance, and cycle counts. The decision-making process is made clearer and more understandable by using
SHAP analysis. The system is built as a web application utilizing the Django framework and backed by a
MySQL database. The system allows secure user interaction, real-time predictions, model handling, and viewing
past predictions. The system has been shown to be accurate in experimental validation conducted by utilizing
metrics of MAE, Root Mean Squared Error, and R?, thus ensuring that it is effective in electric vehicle batteries,
renewable energy storage solutions, and industrial automation, thus ensuring predictive maintenance of batteries.
Future enhancements focus on making the system more intelligent, scalable, and adaptive for real-world battery
monitoring. IoT integration and expanded sensor parameters will enable real-time data collection, instant health
predictions, and predictive maintenance. Advanced deep learning models, including transformers and hybrid
architectures, will improve accuracy in forecasting battery degradation. Mobile applications, cloud—edge
computing, and federated learning will enhance accessibility, scalability, and data security. Improved
explainable Al and adaptive learning will increase transparency, trust, and continuous performance
improvement.
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