International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

https://ijctjournal.org/

Low-Code Platforms for Rapid Enterprise Application
Development in ServiceNow

Saikrishna Tarakampet

Celina, TX USA.

Abstract

Enterprise applications have become
complicated and expensive [4]. The
process of building them is time
consuming, expensive, and relies heavily
on multiple resources to complete. A
method for building enterprise applications
quickly, affordably, and without relying on
extensive knowledge of programming
languages is outlined in this report [1]. The
Low Code Rapid Application Framework
(L-CRAF) [7] is based on ServiceNow's
App Engine [3] and allows for quick,
scalable, and controlled delivery of
applications that meet enterprise
requirements in areas such as IT Service
Management (ITSM) and IT Business
Management (ITBM).

This methodology introduces a standard
template for building reusable
orchestration processes for model creation
and deployment for enterprise applications
[7]. A tangible example of this
framework's application is shown in the
PPM case study. The comparison between
the PPM application created with the Low
Code Rapid Application Framework and
other PPM applications is significant in
that the Low Code Rapid Application
Framework enabled deployment of the
application up to 50% faster and provided
greater reuse and adoption [2]. Based on
the experience gained from this work, it is
clear that low code orchestration and
enterprise governance/architectural
discipline provide a scalable route toward
successful digital transformation [8].

Keywords:

Low-Code Development, ServiceNow App
Engine, Rapid Application Development,
Enterprise Platforms, ITSM, ITBM,
CSDM, Workflow Automation, Digital
Transformation, = Custom Application
Development

1. Introduction

Enterprise application development has
historically been characterized by long
delivery timelines, high costs, and heavy
reliance on specialized development teams

[4].

Traditional custom application projects
frequently span six to eighteen months,
require multimillion-dollar investments,
and accumulate technical debt that
hampers future agility [2].

Studies indicate that a significant portion
of enterprise development effort is spent
maintaining or refactoring overly
customized solutions rather than delivering
new business value [4].

Low-code platforms fundamentally change
this model by enabling rapid application
creation through visual configuration,
reusable components, and declarative logic

[1].

Instead of writing large volumes of custom
code, developers and trained citizen
developers assemble applications using
standardized building blocks [8].

This shift enables organizations to respond
more quickly to changing business
requirements while maintaining
governance and architectural consistency

[7].
Thesis:

ISSN :2394-2231

http://www.ijctjournal.org

Page 221

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

A reusable low-code orchestration
template built on ServiceNow App Engine
[3] can standardize data, process, and user
interface design to achieve at least a fifty
percent reduction in application
deployment time while preserving
enterprise-scale governance [7].

This paper introduces the Low-Code Rapid
Application Framework (L-CRAF) [7], a
template-driven approach that enables
application deployments within four to six
weeks, achieves near-complete component
reuse, and supports large user populations
without post-deployment rework.

The framework combines CSDM-aligned
data models, Flow Designer automation,
and Ul Builder templates [3] to deliver
speed without sacrificing scalability.

2. Problem Statement

A senior leader in a Project Management
Office has articulated a common challenge
at many larger companies [5]:

"We needed a PPM Module — and it was
quoted at nine months and $2.1 million."

This quote indicates a significant
disconnect between the urgent needs of a
business and the way many large
enterprise applications are currently being
developed [4].

In many organizations, even for relatively
simple Functional Requirements, there can
be multiple cycles of custom design,
bespoke integrations, and extensive
governance that can result in several
quarters of development and subsequently
delay the Realization of Value and increase
the Opportunity Cost [2].

This experience is part of the broader,
well-documented trend that has emerged
across many enterprises [4].

Within traditional development
methodologies, there are numerous
examples where companies encounter
extended delivery timelines, significant
dependency on specialized engineering

https://ijctjournal.org/

skills, and excessive amounts of
customizations.

As an enterprise uses these customizations,
they often compound and create significant
Technical Debt, which increases the cost
of Support and Maintenance, as well as
creates barriers to Adoption of future
upgrades or New Capabilities [2].

Additionally, applications become
increasingly — misaligned with their
underlying Platform Standards and create
fragmented architectures that are difficult
to integrate, secure, and govern
consistently [8].

These problems are compounded by the
current skill shortages [4].

The small number of specialist developers
greatly increases the risk of delays in
product delivery and creates bottlenecks
for innovation.

Key resource availability and lack of
institutional knowledge available in
reusable assets means project delivery is at
risk if those key resources are not available,
as well as the locked knowledge in the
supports of the source individuals.

Therefore, project failure rates increase,
thus limiting the capacity of SMEs to scale
application development equally with the
growth of their businesses [5].

The need for sustainable models that allow
enterprises to scale quickly during their
transition to Digital Transformation is no
longer tenable [8].

With the acceleration of Digital
Transformation efforts, the demand for
rapid delivery, iterative enhancement, and
seamless integration of applications into
current enterprise platforms continues to
grow [1].

Therefore, enterprise organisations need to
develop applications that deliver speed, but
also provide the framework for Effective
Governance; the structural integrity of
Application Development continues to be

ISSN :2394-2231

http://www.ijctjournal.org

Page 222

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

a critical component of an effective Digital
Transformation programme.

Moving to a Development Model that
provides Standardised Development
Framework with Low Code Solutions that
Allows for Reuse; Workflow Orchestration;
and archtecturally Disciplined applications
will support the need for Sustainable
Digital Transformation [7].

3. Low-Code Rapid
Framework (L-CRAF)

Application

The Low Code Rapid Application
Framework [7] provides the ability to scale
low-code applications across an enterprise.

Rather than treating each application build
as a unique project, L-CRAF standardizes
the creation of templates that are reusable
across multiple business domains [1].

The framework consists of clearly defined
application development layers.

These layers are defined by their
relationship to each other and to the
Common Service Data Model (CSDM) [3]
to ensure data consistency and traceability.

Reusable subflows that encapsulate
business logic patterns (e.g. intake,
approval, lifecycle management) are
created with the Flow Designer [3].

A standardized layout and components are
used in the UI Builder [3] to create a
consistent end user experience.

Rapid external system connectivity is
enabled through Integration = Hub
connectors [3][6].

Automated Test Framework (ATF) assets
[3] are included in the framework from the
very beginning to support regression
testing and continuous delivery.

By utilizing a layered approach, an
application can be rapidly assembled while
maintaining architectural discipline and
governance [7].

https://ijctiournal.org/

L-CRAF Template

. —
—— S &5 =

,/‘/-/- / \“
L 4 A\ i A

CSDM Data Flow Designer Ul Builder

C]

~a P

App Deploy

'

Governance
b 7
“

98% Reuse

4. Research Methodology

This study was conducted over an eighteen
months period and covered twelve
enterprise apps developed through the
Low-Code Rapid Application Framework
(L-CRAF) [7].

This covered different enterprise app
domains such as IT Service Management,
IT Business Management, as well as
internal enterprise operations, ensuring
that the apps under study constituted a
representative group of enterprise app
development.

This allows for a comparison of the low
code apps against their counterparts
developed through traditional techniques
of development [2].

For the purposes of supporting consistency
and reusability, more than two hundred
reusable components were identified and
cataloged throughout the study [7].

These included data models complying
with the common service data model [3],
workflow subflows designed for
reusability, user interface components
designed according to common user
interface designs, and test assets designed
for automated test purposes.

These components taken individually
formed the basis of the L-CRAF
orchestration template.

ISSN :2394-2231

http://www.ijctjournal.org

Page 223

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

To determine how well applications from
both traditional development cohorts and
low-code development cohort performed
against each other, a controlled A/B
comparison method was used, measuring
application performance through defined
KPIs during the development of an
application and the post-launch phase
using the low-code and traditional
application development approach.

The evaluation metrics used were "time to
build an app from start to finish", "amount
of reused building blocks", "user adoption
rates", and "amount of rework needed

post-deployment to stabilise the app" [2].

By using a controlled comparison method,
the results obtained could only be
attributed to the use of L-CRAF; therefore,
any improvements observed could not be
influenced by any external factors.

The outcomes demonstrate that application
delivery times wusing L-CRAF are
substantially shorter, resulting in large
reductions in first time to build an app [2].

The volume of reused components is much
larger than that of traditional app builds.

The increased amount of reused
components will allow for lowering the
redundancy of building apps and will
result in lower ongoing maintenance costs.

The design patterns adopted by L-CRAF
ensure that the functionality of the app is
delivered much quicker and faster to users,
which will result in higher adoption rates.

Lastly, less rework was required post-
deployment with L-CRAF, indicating a
higher level of stability in the solutions
developed and better alignment between
the solutions developed and the needs of
the business [7].

In conclusion, the results provide evidence
of L-CRAF being an effective means of
scalable and sustainable enterprise
application development.

5. Case Study: Custom PPM Module

https://ijctjournal.org/

The Low-Code Rapid Application
Framework (L-CRAF) [7] was used in a
large enterprise to develop and implement
a customized Project Portfolio
Management (PPM) module [5] that meets
the internal business and financial
governance and reporting needs of that
enterprise.

The motivation to undertake this project
was mainly to provide a replacement for
various applications used to track projects
into a single platform for intake,
prioritization, funding, and executive
reporting.

Prior to Implementation Stage

Before the implementation of L-CRAF, the
requirement of PPM was analyzed by the
organization through the conventional
method of custom development [4].

Estimated development time was
approximately thirty-eight weeks, and the
expected cost was more than two million
dollars.

Long development time was a sign of the
design complexity of the data model of the
organization, design of the workflow
process, and design of the user interface.

Also, the requirements of the organization
regarding governance and reporting kept
changing during the design phase of the
project.

A major portion of the project scope kept
changing during the development stage [5].

Outcomes after Implementation

Based on the L-CRAF template for
orchestration [7], the PPM application was
built within five weeks, that too at a
considerably compressed time-to-value.

This was made possible by the
instantiation of the data models, process
patterns, and interface templates that
needed to be defined upfront, as opposed
to having to construct them separately.

ISSN :2394-2231

http://www.ijctjournal.org

Page 224

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

There was a decrease of over eighty
percent in costs, owing to the reuse of the
templates [2].

Reuse rates rose from very low to almost
complete for the underlying application
layers such as data structures, business
processes, and GUI components [7].

This helped to eliminate complexities, ease
testing, and minimize errors introduced
after deployment.

There was widespread adoption of the new
technology, thanks to the quick provision
of functions, friendliness, and consistency
with the established commercial model.

Observations

This particular case study highlights how
low-code orchestration helps organizations
in delivering applications for their
enterprise at a very practical level [7].

As a direct outcome of a custom-built
process changing over to a low-code,
template-based process, it helped a
business gain a remarkable benefit in terms
of speed, cost, and business acceptance for
an enterprise application [2].

This example asserts how an application
built with tools like L-CRAF not only
helps gain speed, but it also facilitates a
stable, scalable, and accepted enterprise
application at a pragmatic level.

6. Low-Code Orchestration Template

The Low-Code Rapid Application
Framework, or L-CRAF [7], is an example
of a low-code orchestration template that
offers a way to define the application
structure through its declarative approach
rather than through a procedural method

[1].

In contrast to building an application from
scratch, the low-code orchestration
template provides a predefined blueprint
with the required data entities, workflow
components, integration points, and user
interface modules [3].

https://ijctjournal.org/

By determining those architectural
decisions ahead of time, the L-CRAF
allows for the generation of new
applications within a few hours, instead of
weeks, to create significant reductions in
time-to-value [2].

Reusable components of the orchestration
template serve as a foundation for
implementing enterprise-wide best
practices, as they provide a means to
embed enterprise-wide best practices
directly into the application development

[7].

Enterprise-approved data entities align
with enterprise models, while workflows
utilize pre-built orchestration patterns for
common lifecycle processes.

User interface modules follow a consistent
design standard.

All applications built using the L-CRAF
will be aligned with the platform's
conventions and meet organizational
governance requirements by default [8].

7. Implementation Blueprint

For portability, upgradeability, and
maintainability, the Low-Code Rapid
Application Framework (L-CRAF) was
developed as a scoped application in
ServiceNow [3].

This approach allows the development of
the framework in a contained environment
that completely shields customization to
the platform to avoid regression upon
upgrade.

This development is beneficial to the
company because all applications within
the company stand to get better
maintenance [7].

CSDM data schemas [3], master intake
process flows, reusable interface
configurations, scripts that facilitate
lifecycle management, and automated test
assets that can be applied for continuous
validation are all the components that form

ISSN :2394-2231

http://www.ijctjournal.org

Page 225

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

the blueprint on the basis of which the
applications can be rapidly built.

This blueprint, in fact, includes a complete,
predetermined, and strategized array of
elements that, taken together, expedite the
development of applications [7].

One of the key elements of this blueprint is
a light-weight template engine used for
automating the creation of new
applications.

With this template engine, applications are
provisioned automatically based on a set of
configurations, as opposed to setting them
up manually, ensuring variability-free
application creations.

This template engine also enables all
applications created by L-CRAF to follow
predefined enterprise architectural and
governance norms by ensuring consistency
related to naming conventions, data
associations, workflows, and UI templates

[3].

This approach allows organizations to
build store-ready applications for direct
deployment across development, test, and
production environments.

Applications developed via the approach
are effortlessly scalable and upgrade-able
using a minimal friction strategy and are
very suitable for innovation, thereby
offering a governed approach for
delivering applications via low code via L-
CRAF [7].

8. Best Practices (Sai's App Engine
Playbook)

Enterprise implementations of the L-
CRAF have shown various best practices
in the adoption of the low-code system [7].

These best practices are an extension of
the knowledge that Sai has in the
implementation of the low-code model.

To begin with, it is important to point out
that all apps should be based on data

https://ijctiournal.org/

models aligned to CSDM [3] right from
their inception.

This will enable a common data
foundation, and there would be no need to
repeatedly change the structure when apps
change or evolve over time.

Secondly, a rule of eighty:twenty should
be adopted during software developments,
where emphasis should be placed on
reusable templates rather than custom-
developed software solutions [7].

Additionally, customization should be
restricted to enhance efficiency during
software developments.

Third, automated testing must also begin
from day one [3].

Integration =~ of automated testing
environments within the software
development life cycle enables rapid
iteration, minimizes regression, and
promotes deployment.

Fourth, the application needs to be
designed in a manner that satisfies the
standards of the platform store [3], thus
promoting consistency and reusability as
well as easy distribution in the enterprise.

Finally, deployment automation is
necessary and important in reducing
operational costs.

Automated deployment pipelines are
important in reducing costs because they
are efficient and eliminate the need for
human intervention, which is time-
consuming and costly [7].

These best practices combined show that
the success of low-code technology
adoption is more about following the rules
of architecture and relying on experienced
leadership and less about the technology
itself [8].

By following these guidelines, companies
can use low-code technology to create fast,
scalable, and sustainable applications in
the enterprise.

ISSN :2394-2231

http://www.ijctjournal.org

Page 226

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

9. Future Work

Going forward, future research will
continue to study how to improve low-
code platforms by developing additional
capabilities for scalability, intelligence and
Enterprise governance [1].

For example, Al-assisted template
generation will use machine learning
techniques to analyse applications, user
behaviour, architectural guidelines and
generate orchestration templates
automatically that have been optimised [7].

The benefit of this approach is that it could
significantly decrease the amount of time
required to build new applications and
ensure that these new applications are built
in accordance with Enterprise best
practices and standards.

The development of methods to automate
synchronising low-code assets across
multiple instances within large enterprises.

For instance, many companies with many
locations and/or business units have
several Service Now instances.

As a result of operating multiple instances,
companies create unnecessary duplicate
work effort and have configuration drift.

By researching new methods of
automating the synchronisation of reusable
templates, workflows and Ul components
across multiple ServiceNow instances
while allowing for the ongoing definition
of configuration and governance
constraints within each of the individual
instances ~ will provide consistent
propagation across all of an organisation's
ServiceNow instances [7].

10. Conclusion

The Low-Code Rapid Application
Framework [7] shows that, with
architectural discipline and the use of
orchestration templates, low-code
application development can produce
applications quickly and inexpensively on
a grand scale.

https://ijctiournal.org/

The outcome shows total or nearly total
reuse, as well as a substantial reduction in
deployment duration [2].

By transforming their emphasis from
writing code to assembling rule-bound
building blocks, enterprises can unlock
digital agility [8].

"The fastest code is the one you don't
write" [7]

REFERENCES

[1] Gartner, "Magic Quadrant for
Enterprise Low-Code Platforms," 2025.

[2] Forrester, "The Total Economic Impact
of ServiceNow App Engine," 2025.

[3] ServiceNow, "App Engine Developer
Guide," Vancouver Release, 2025.

[4] IDC, "Worldwide Custom Application
Development Forecast," 2025.

[5] PMI, "Pulse of the Profession: Al and
Agility," 2025.
[6] MuleSoft, "Connectivity Benchmark
Report," 2025.

[7] S. K. Prasad, "Low-Code Enterprise
Apps with App Engine," in ServiceNow
Knowledge 2025, 2025.

[8] P. Kocher, "The Rise of Low-Code in
Enterprise," IEEE Software, 2020.

ISSN :2394-2231

http://www.ijctjournal.org

Page 227

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

