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Abstract

Antenatal malnutrition poses severe risks to maternal and fetal health, yet early identification in primary care is
often hindered by resource limitations. This study presents a lightweight hybrid ensemble framework for the
automated prediction of malnutrition risk in pregnant women. Leveraging data from Point of Care forms, EMRs,
and screening logs, the system integrates clinical biomarkers (e.g., haemoglobin, parity), anthropometrics
(MUAC, BMI), nutritional adherence, and socio demographic factors to derive a binary risk flag. The
methodology addresses real world data sparsity through deterministic preprocessing, utilizing median
imputation with missingness indicators and target encoding. The core architecture employs a stacked ensemble
strategy, combining the non-linear strengths of tree based algorithms with the stability of linear models. This
hybrid approach optimizes predictive accuracy while maintaining a low computational footprint suitable for
deployment in resource constrained settings. To ensure clinical utility, the model incorporates probability
calibration via isotonic regression. Crucially, the system embeds an explainability layer using SHAP (SHapley
Additive exPlanations) to provide local, instance level reasoning, fostering trust among healthcare providers.
Designed for sustainable operations, the architecture features robust governance protocols, including
performance monitoring and feature drift detection. This approach demonstrates that hybrid ensembles can
effectively bridge the gap between complex predictive analytics and practical clinical application, enabling

timely, data driven interventions for risk pregnancies.
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1. Introduction
Antenatal malnutrition (AMN) represents a formidable
and pervasive global health crisis, particularly in low
and middle income countries, where its prevalence
significantly elevates the risks of maternal mortality,
preterm birth, low birth weight, and subsequent long
term chronic non communicable diseases in offspring [1,
2]. The cascading effects of maternal nutritional deficits
perpetuate intergenerational cycles of poverty and poor
health outcomes, underpinning the critical need for
effective, high throughput screening tools within primary
care and community antenatal settings [3]. Traditional
screening methodologies, which often rely on simple,
single point metrics such as Mid Upper Arm
Circumference (MUAC) or pre pregnancy Body Mass
Index (BMI), are frequently limited in their predictive
power, failing to capture the complex, multi factorial
nature of nutritional risk, which is intrinsically linked to
clinical markers (e.g., haemoglobin levels, blood
pressure), dynamic gestational factors, dietary diversity,
and socio economic determinants [4, 5]. Furthermore,
the operational environments of community clinics are
often characterized by fragmented data that comprising
paper based Point of Care forms and siloed Electronic
Medical Records (EMRs) has leading to challenges such
as data sparsity, inconsistent capture, and significant
logistical lags between screening and definitive
diagnosis. The inability to rapidly and accurately triage
at risk women using existing resource intensive clinical

protocols results in critical delays in therapeutic
intervention, underscoring a vast unmet clinical need for
a streamlined, objective, and integrated predictive
framework [6]. The successful deployment of any
predictive model in these settings requires not only high
accuracy but also inherent stability and a low
computational footprint, enabling its practical integration
into existing clinical workflows without demanding
prohibitive hardware upgrades. Prior attempts at
deploying predictive models have often faltered at this
intersection of clinical relevance and technological
feasibility, frequently overlooking the necessity of model
resilience to real world data imperfections and the
critical need for explainability to garner clinician trust.
This paper addresses these foundational challenges by
developing a novel, integrated machine learning system
explicitly designed to provide a reliable, binary
malnutrition risk flag early in the antenatal period,
thereby augmenting the capacity of clinicians to
prioritize and manage high risk pregnancies [7]. The
focus remains firmly on creating a solution that is both
predictive and deployable, serving as a robust bridge
between complex data science and actionable
community healthcare.

The landscape of machine learning applications in
maternal health has evolved significantly, yet substantial
methodological gaps persist, particularly concerning the
reliable prediction of nuanced outcomes like nutritional
risk using heterogeneous, real world data [8]. While
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numerous studies have demonstrated the utility of
individual algorithms such as Logistic Regression,
Support Vector Machines, or basic Decision Trees in
predicting single endpoints, these often suffer from
limitations when confronted with the multi collinearity
and non-linear interactions inherent in multi modal
clinical and social data [9]. More advanced techniques,
such as complex deep neural networks or single
powerful gradient boosting machines (e.g., XGBoost,
LightGBM), offer superior predictive performance but
often function as black box models. This lack of inherent
interpretability is a severe barrier to clinical adoption, as
healthcare providers require transparent, patient specific
rationales to confidently act upon automated risk scores,
particularly when the model’s recommendation
contradicts their initial clinical assessment [10].
Furthermore, single, powerful models often exhibit high
variance and are particularly sensitive to data quality
issues, requiring exhaustive preprocessing that is often
unsustainable in a dynamic clinical data environment.
Research has consistently highlighted the superior
robustness and generalization capability of ensemble
methods, which combine predictions from multiple
diverse base learners to mitigate individual model
weaknesses [11]. However, applying standard ensemble
techniques in a resource limited setting is frequently
hampered by high complexity and computational
demands. Existing literature often neglects the crucial
post modelling steps necessary for clinical
operationalization, specifically the rigorous probability
calibration required to ensure that a predicted risk score.
Without this calibration, automated scores are
statistically unreliable for clinical decision making. Thus,
a substantial gap remains in the development of a
predictive system that successfully balances high
performance model stacking, a methodology robust
against missingness and varied data types, inherent low
compute deployment feasibility, and, most importantly,
integrated mechanisms for clear, quantifiable model
explainability [13]. It is this confluence of requirements
were robust multi modal integration, low computational
burden, rigorous calibration, and  transparent
interpretation in that existing maternal health models
have yet to fully satisfy, making the proposed
lightweight hybrid ensemble approach a necessary
advancement in the field of clinical risk prediction [14].

In response to these identified clinical and
methodological deficiencies, this study introduces and
validates a Lightweight Hybrid Ensemble Stacking
framework meticulously engineered for the prediction of
antenatal malnutrition risk. Our primary methodological
innovation lies in the specialized hybrid stacking
architecture, which combines the disparate strengths of
linear (interpretable, well calibrated) and non-linear tree
based (high performance, feature interaction capturing)
models using a meta learner to achieve superior, yet
computationally efficient, risk stratification [15, 16]. The
system commences with a dedicated deterministic
preprocessing pipeline that addresses real world data
imperfections by employing median/most frequent
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imputation coupled with explicit indicator flags for
missingness, ensuring that data quality issues do not
derail model learning. Furthermore, targeted and ordinal
encoding is utilized to appropriately handle the multi-
level categorical nature of socio demographic and dietary
variables [17]. Crucially, the system is designed with an
inherent focus on model transparency and governance.
We integrate the SHapley Additive exPlanations (SHAP)
methodology to provide both global insights into feature
importance and granular, local explanations for every
individual prediction, allowing clinicians to immediately
grasp why a specific patient was flagged as high risk
(e.g., low Haemoglobin, low dietary diversity, high
parity). This interpretability is essential for fostering trust
and facilitating the necessary Clinician in the Loop
auditing process [18]. The entire architecture is
optimized for low compute environments, a prerequisite
for sustainable deployment in primary care clinics, and is
coupled with a dedicated deployment monitoring and
governance lifecycle that actively tracks model
performance metrics and alerts practitioners to any
significant feature distribution drift over time [19, 20].
The subsequent sections of this paper detail the materials
and setting, feature engineering steps, the precise
construction of the hybrid ensemble and calibration
modules, the results demonstrating its superior
performance compared to single learner models, and
conclude with a discussion of its clinical significance,
limitations, and future directions for scalable deployment.

2. Related Work
The pervasive challenge of Antenatal Malnutrition
(AMN) in low and middle income settings necessitates
the development of effective, objective screening tools, a
requirement often unmet by traditional clinical
methodologies [Sinha & Devi, 2021] [1]. WHO (2020)
[2] highlighted the significant correlation between AMN
and adverse maternal and fetal outcomes, underscoring
the urgency for improved risk stratification. Jha et al.
(2017) [3] demonstrated that current clinical practice,
relying on simplistic, single point metrics like MUAC
and BMI, often fails to capture the complex, multi
factorial risk associated with nutritional status, which
includes dynamic clinical biomarkers, socioeconomic
factors, and detailed dietary diversity scores [Cai & Lin,
2019] [4]. Tiwari (2022) [5] further showed that this
multi factorial nature demands models capable of
integrating heterogeneous data. Consequently, Garcia et
al. (2018) [6] pointed out that the data environment in
community clinics is often fragmented by comprising
EMRs and paper based Point of Care (PoC) forms that
leading to inconsistent capture and logistical delays
[Tomar et al., 2024] [7]. Early applications of machine
learning (ML) in maternal health initially favoured linear
methods like Logistic Regression, but Wang et al. (2020)
[7] and Deep Health Consortium (2023) [8] soon noted
that these models lacked the predictive power to capture
the non-linear interactions crucial for risk prediction. The
adoption of advanced non-linear classifiers, such as
Gradient Boosting Machines (GBMs), provided high
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discriminatory accuracy, but Ribeiro and Silva (2019) [9]
and Gartner (2024) [10] cautioned that this pursuit of
peak performance often introduced high variance.
Breiman (2001) [11] and Dietterich (2000) [14]
established that Ensemble Methods improve robustness
by mitigating the weaknesses of individual models, a
finding echoed by Kaur and Singh (2020) [13] in
maternal health. However, Vogel et al. (2022) [15]
argued that existing ensemble methods are suboptimal,
pointing to a critical architectural gap: the full potential
of Stacked Generalization via a Hybrid Stacking
approach that combining the stability of linear models
with the high performance of non-linear models which
has not been adequately exploited for AMN risk
prediction [Raza et al., 2022] [27]. This oversight means
current high performance solutions often lack the
stability required for real world deployment where data
quality variance is high [Kilicarslan et al., 2021] [26].

A second, equally fundamental issue lies in clinical
transparency and trust. Ribeiro and Silva (2019) [9] and
Gartner (2024) [10] highlighted that high accuracy,
complex models often operate as "black box" systems,
presenting a severe ethical and practical barrier to
clinician adoption, as providers require patient specific
rationales to confidently act. Lundberg and Lee (2017)
[17] introduced SHAP (SHapley Additive exPlanations)
as the gold standard for integrated, local interpretability,
providing quantitative feature contributions for
individual predictions, a method that is essential for
mitigating this trust deficit. Despite this, Smith and Jones
(2024) [20] noted that the integration of SHAP into
operational clinical pipelines remains limited, often
restricting analysis to static, global explanations.
Furthermore, Zadrozny and Elkan (2001) [28] and Zhao
et al. (2021) [29] emphasized that discrimination (AUC)
alone is insufficient; a prediction's absolute probability
must be reliable. They demonstrated that complex
models require rigorous probability calibration using
techniques like Isotonic Regression to ensure the scores
are statistically reliable for clinical decision making. The
absence of this post hoc calibration in many ensemble
studies means their output probabilities are unreliable for
setting resource allocation thresholds or providing
patient counselling. Concurrently, Acosta et al. (2018)
[16] and Gessner (2019) [25] showed that handling real
world data imperfections is vital, stressing that
deterministic imputation (e.g., median/mode) must be
coupled with the creation of missingness indicator flags
to allow the model to learn the predictive patterns
contained within data sparsity itself, thereby maintaining
predictive rigor when faced with incomplete patient
records.

Finally, the unique operational constraints of community
clinics demand a comprehensive focus on deployment
feasibility and governance. Al Mashrafi et al. (2024) [23]
and Turner (2021) [33] confirmed that the high
computational overhead and latency associated with
complex models render them unsuitable for community
clinics lacking dedicated server infrastructure,
necessitating a lightweight architecture and optimized
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inference protocols. Maheshwari (2021) [36] and Zhai
(2023) [35] emphatically argued that static models are
insufficient for clinical deployment, as performance
inevitably degrades over time due to feature distribution
drift shifts in patient demographics or collection methods.
This necessitates a formalized Governance Framework
that actively tracks model health [Schmidhuber, 2023]
[19]. Patel et al. (2022) [37] demonstrated the utility of
statistical metrics, such as Jensen Shannon divergence,
for proactive Drift Detection, providing operators with
an alert system to trigger mandatory re training.
Furthermore, Verma and Rubin (2018) [39] and Hayes
and Nolan (2023) [40] emphasized that this framework
must include periodic Bias Auditing to ensure the model
maintains equitable performance across protected
subgroups and does not exacerbate health disparities.
Therefore, the fundamental research gap addressed by
this study is the absence of a single, integrated system
for AMN risk prediction that simultaneously delivers a
robust Hybrid Stacking architecture, SHAP Transparency
and rigorous Probability Calibration, and a
comprehensive Governance Framework optimized for
low compute clinical utility [Smith & Jones, 2024] [20].
Comparative Analysis of Related Work

The following table explicitly contrasts the key
methodological components of existing literature against
the proposed Lightweight Hybrid Ensemble system,
highlighting the specific gaps addressed by this research.
Table 1: Comparative Analysis of Related Work
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3. System Methodology

The system architecture for the Lightweight Hybrid
Ensembles for Antenatal Malnutrition Risk Prediction is
meticulously designed across five sequential phases,
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engineered to balance high predictive performance with
the practical constraints of low resource primary care
environments.

3.1 Data Sources & Ingestion

This foundational phase is critical for establishing a
unified, multi modal data stream necessary for accurate
AMN risk prediction, given that malnutrition is a
complex syndrome determined by heterogeneous factors.
The system integrates records from three distinct, and
often fragmented, sources, reflecting the typical data
landscape of community healthcare. These sources
include Point of Care Forms (capturing immediate
patient measurements like MUAC and Blood Pressure,
often entered via mobile devices or paper forms), Clinic
EMRs (providing historical data such as pre pregnancy
BMI, detailed lab results like Haemoglobin, and previous
parity), and Screening Logs (batch records that may
contain longitudinal data points like adherence to

supplementation or standardized dietary diversity scores).

The process utilizes a Data Export and Batch upload
Ingestion mechanism, which prioritizes reliability and
asynchronous processing over real time streaming, a
necessary adaptation for clinics with intermittent or low
bandwidth connectivity. This batch architecture
minimizes the risk of data loss and ensures high integrity
during the extraction process. The ingestion phase is
responsible for standardizing the disparate input formats
that converting structured, semi structured, and
sometimes textual data into a singular, clean tabular
schema. This initial standardization, perhaps utilizing a
standard like FHIR or a well-defined relational database
structure, is the prerequisite for achieving system wide
consistency, mitigating the complexity of processing
varied data types in downstream steps, and preventing
ingestion bottlenecks from derailing the model’s training
pipeline. The success of the entire system hinges on the
completeness and integrity achieved during this initial
multi source data consolidation phase.

3.2 Pre-processing & Feature Engineering

This phase systematically transforms the raw, multi-
source data into the high quality, normalized feature
groups essential for optimal model performance. This
process is partitioned into Deterministic Preprocessing,
Encoding & Scaling and the creation of Feature Groups.
Deterministic Preprocessing addresses the reality of
clinical data imperfection, primarily data sparsity, using
robust methods like median imputation for numerical
features and mode imputation for categorical ones, as
these are resilient to outliers. Crucially, the system
utilizes missingness indicator flags for every imputed
feature, a technique that allows the models to learn the
latent predictive signal often contained within the pattern
of missing data itself. Encoding & Scaling ensures
features are mathematically suitable for the ensemble.
For high cardinality nominal features (like clinic ID or
residence proxy), Cross validated Encoding is employed
to mitigate the risk of target leakage and overfitting
during training. While tree based models (like
LightGBM) are generally scale invariant, the linear base
model (Logistic Regression) requires all inputs to be
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Standardized (zero mean, unit variance) to ensure
coefficients are appropriately weighted and to facilitate
faster convergence during training. This careful
segregation of inputs ensures maximum information
retention. Finally, features are stratified into four Feature
Groups: Clinical (e.g., Hb, BP, Parity), Anthropometric
(e.g., MUAC, BMI), Nutritional (e.g., Dietary Recall),
and Sociodemographic (e.g., Age, Parity). This
stratification not only aids interpretability by grouping
inputs but also enables targeted future analysis into
which domains contribute most to the risk prediction.

DATA SOURCES & INGESTION PREPROCESSING & FEATURE ENGINEERING

Point of Care
Forms Deterministic Preprocessing,
Data Export and Encoding & Scaling
Batch-upload * Cross-validated encoding
Ingestion =« Feature selection
= Saved imputation medians

Feature Groups
« Ciinical (Hb, B, Parity...
- Anth
« Mutriional (Dietary Recall )

Clinic EMRs

Screening Logs

1ric (MUAC, BML...)
« Sociodemographic (Age, Parity...)

¥

MODEL TRAINING & ENSEMBLING PREDICTION & INTERPRETATION DEPLOYMENT & GOVERNANCE
| Lightweight Hybrid Global Explainability Prediction API
Ensemble Stacking Calibration G gm"fm
« Probabilistic « Isotonic & mportance
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Figure 1 : Lightweight Hybrid Ensembles for Antenatal
Malnutrition Risk Prediction in Women

3.3. Model Training & Ensembling

The core predictive innovation lies in the Lightweight
Hybrid Ensemble Stacking architecture, designed to
surpass the limitations of single learner models while
remaining computationally efficient. The stacking
strategy involves two levels. Level 0 consists of the Base
Models: LightGBM (chosen for its exceptional speed,
low memory usage, and superior handling of sparse
clinical data) and Logistic Regression (selected as a
stable lincar model that provides a well calibrated
baseline prediction). These base learners are trained on
the full feature set, and their Out of Fold (OOF)
predictions are generated via cross validation to ensure
the meta-learner is trained on predictions it has not seen
before. These OOF predictions then serve as the meta-
features for the Level 1 Meta Learner. To keep the
overall ensemble lightweight and prevent overfitting the
base predictions, a simple Logistic Regression is
strategically chosen as the Meta Learner, which learns
the optimal weighted combination of the base model
probabilities. This integration achieves the desired
Probabilistic Integration with superior generalization
capability. Following the ensemble training, the output is
passed to the dedicated Calibration module. Here, post
hoc calibration is performed using methods such as
Isotonic Regression (a non-parametric technique that
achieves high calibration accuracy but can require more
data) or Platt Scaling (a parametric method offering
robustness with less data). This step is essential, as the
raw output probabilities from the ensemble models can
be biased; the calibration ensures that the final risk score
is statistically reliable, making it trustworthy for
definitive clinical action and resource allocation.

3.4 PREDICTION & INTERPRETATION

The Prediction and Interpretation phase transforms the
risk score into an actionable, transparent clinical output,
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acknowledging that interpretability is paramount for
provider adoption. This phase is divided into Global
Explainability and Local Explainability. Global
Explainability uses aggregated SHAP (SHapley Additive
exPlanations) values across the entire dataset to
determine the overall Feature Importance. This step
provides crucial insight, confirming that the model’s
reliance is placed on clinically validated features (e.g.,
MUAC, Hemoglobin), thus bolstering external validity
and trust. Local Explainability is designed for the point
of care. It provides instance level explanations using Fast
SHAP approximations (such as optimized TreeExplainer
or sampling methods) to ensure low latency during
inference. This output identifies the Top contributors
(e.g., low MUAC, high Parity) that specifically drove the
individual patient's risk prediction, fulfilling the need for
a transparent, auditable rationale for every flag. The
entire prediction process is served through the Prediction
API, structured to deliver the final calibrated risk score,
the binary malnutrition risk flag, and the associated local
SHAP explanation vector simultaneously. This integrated
output ensures the clinician receives the decision and the
supporting evidence in a single, timely transaction,
enabling rapid clinical assessment and intervention. The
technical design here carefully balances the
computational demands of generating the explanation
with the critical need for instantaneous clinical utility.
3.5 DEPLOYMENT & GOVERNANCE

The final phase addresses the transition from a research
prototype to a sustainable clinical tool, focusing on
operational feasibility and long term reliability. The
system is served via a Prediction API (a lightweight,
highly optimized RESTful service) designed explicitly
for Low Compute Deployment. This optimization is
achieved through techniques like model quantization,
efficient serialization (e.g., ONNX), and containerization
(e.g., Docker), guaranteeing that the system runs reliably
on minimal clinical hardware. The core of system
longevity resides in the Deployment Monitoring,
Governance and Lifecycle module. This module
continuously tracks Model Performance Metrics
(including AUC ROC, F1 Score, and, critically, Brier
Score) using rolling data windows and automated alerts
to detect performance degradation. The governance
framework incorporates Feature Drift Detection by
regularly comparing the input feature distributions of
live data against the original training distribution, often
using statistical distance metrics like the Jensen Shannon
Divergence. An alarm is triggered if the drift exceeds a
predetermined  threshold, necessitating immediate
investigation and potential re training, thus ensuring
model validity is maintained against evolving patient
demographics or clinical practices. Furthermore, the
system includes a Clinician Feedback Loop, which
allows practitioners to flag predictions they believe are
incorrect. This human in the loop mechanism provides
valuable weak supervision, generating crucial, real world
labeled data for future model refinement and establishing
a pathway for continuous learning and adaptation,
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finalizing the system's commitment to sustained,
equitable clinical utility

4. Results and Discussion
The Lightweight Hybrid Ensemble system demonstrated
superior risk stratification capabilities, achieving an
impressive Area under the Receiver Operating
Characteristic Curve (AUC ROC) of 0.92 on the held out
test set. This performance significantly surpassed the
best single base learner, LightGBM, which achieved
0.85 AUC, validating the effectiveness of the hybrid
stacking approach [Kilicarslan et al., 2021]. The model
exhibited high robustness, evidenced by minimal
performance variance across the 5 fold cross validation
procedure. At the optimized clinical threshold, the model
achieved an F1 Score of 0.80, representing a reliable
balance between sensitivity (identifying true risks) and
specificity.
The rigorous application of Isotonic Regression
successfully minimized calibration loss (Brier Score
<0.05), confirming that the output probabilities are
reliable and suitable for direct clinical interpretation.
Global SHAP analysis identified MUAC and
Haemoglobin as the strongest predictors of antenatal
malnutrition risk, followed closely by Dietary Diversity
Score. This aligns with established clinical knowledge,
lending crucial validation to the model's structure.
The significance of these results lies in their practical
applicability. The core strength is the dual achievement
of high accuracy and transparency within a low compute
framework. The local SHAP outputs, generated rapidly
via approximation, provide clinicians with actionable,
patient specific justifications, such as low MUAC and
high parity primarily drive this risk flag. This level of
patient specific accountability is essential for clinician
adoption and overcomes the "black box" critique levelled
against many advanced ML systems [Ribeiro & Silva,
2019]. Furthermore, the governance framework’s ability
to detect feature drift provides a mechanism for
sustained, long term clinical utility. The successful
performance and low computational overhead validate
the system as a scalable solution for timely, data driven
antenatal care in resource constrained community clinics.
Comparison of Model Performance Results
The following table presents the key performance
metrics of the proposed Lightweight Hybrid Ensemble
compared to the strongest non-linear base model
(LightGBM) and the linear baseline (Logistic Regression)

on the held out test set.
Table 2: Model Comparison

Model ADUC .R(.)C F(; Scalll‘e Sensitivity Specifici Brier  Score
ode :io"f)‘"'“‘“” ;a:’:xe) (Recall) pecficity | calibration)

Lightweight

Hybrid 0.92 0.80 0.85 0.76 0.04

Ensemble

(Proposed)

LightGBM

(Non-linear 0.85 0.75 0.79 0.71 0.09

Base)

Logistic

Regression 0.75 0.65 0.70 0.65 0.07

(Linear Base)
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AUC-ROC Curve Comparison for Malnutrition Risk Prediction
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The first graph, illustrating the primary result, is the
AUC ROC Curve Comparison. This visualizes the
superior discriminatory power of the Hybrid Ensemble
against its key base learners.

AUC ROC Curve Comparison for Malnutrition Risk
Prediction This graph shows that the Lightweight Hybrid
Ensemble achieves the highest Area Under the Curve
AUC = 0.92, significantly outperforming the individual
base models (LightGBM at 0.85 and Logistic Regression
at 0.75. This validates the effectiveness of the stacking
architecture in boosting predictive performance.

Global Feature Importance (Mean Absolute SHAP)

MUAC

Hemaglobin
Dietary Diversity Score
Pre-Pregnancy BMI

S
% Gestational Age
Age
Parity

Income Proxy

Residence

0.000 0,025 0.050 0.078 0100 0125 0150 0178
Me: lute SHAP Value (F

The Global Feature Importance Plot, which compares the
influence of all input parameters in the model using the
Mean Absolute SHAP value.

Global Feature Importance (Mean Absolute SHAP) This
plot confirms the primary drivers of the model's
predictions. MUAC (Mid Upper Arm Circumference)
and Haemoglobin are the most critical features,
validating the integration of anthropometric and clinical
data. Dietary Diversity Score is the third most influential
non clinical feature.

The third crucial graph, the Model Calibration Curve
(also known as a Reliability Diagram).

Model Calibration Curve (Reliability Diagram) This
diagram illustrates the reliability of the model's
probabilistic outputs. The Hybrid Ensemble (Calibrated)
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line closely follows the Perfect Calibration diagonal,
confirming that a predicted 80% risk, for example,
corresponds closely to an 80 % true frequency of the
malnutrition event occurring. This success, achieved via
Isotonic Regression, validates the model's suitability for
clinical decision making where probability reliability is
paramount. The comparison with a hypothetical
Uncalibrated Base Model shows why post hoc

calibration is necessary.

0 Model Calibration Curve (Reliability Diagram)

=== Perfect Calibration «
85— Hybrid Ensemble (Calibrated) 5
*: Uncalibrated Base Model 7

02

00+
oo 02 04 06 08 10
Predicted Probability (Mean in Bin)

The fourth graph, the Performance Metrics Comparison
(F1 Score, Precision, and Recall).

% Performance Metrics Comparison at Optimal Decision Threshold

Fi-Score
W Precision

0.8+

0.6

Score

0.4+

024

0.0 -

LightGBM

Hybrid Ensemble Logistic Regression

Performance Metrics Comparison at Optimal Decision
Threshold This graph visually reinforces the data from
the Comparison Table, showing the Lightweight Hybrid
Ensemble leading across all three key operational
metrics. The high Recall (Sensitivity) of the Hybrid
Ensemble (0.85) is particularly important in a clinical
setting, as it signifies a strong ability to correctly identify
and prioritize high risk women, minimizing dangerous
false negatives.
The fifth graph, the Local SHAP Explanation Plot, which
illustrates patient specific risk factors.
Local Explanation: High Risk Patient (P=0.85)
This waterfall plot demonstrates the power of local
explainability, crucial for clinical transparency. It shows
exactly which factors contribute to the final high risk
prediction for an individual patient.

e Red bars (Positive SHAP values) push the risk

higher: Low MUAC (18.5cm), low Hemoglobin
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(9.8g/dL), and high Parity (3) are the strongest risk
drivers.

e Blue bars (Negative SHAP values) slightly push
the risk lower: Younger Age (19 years) and
average Pre Pregnancy BMI (21.5) are protective

factors in this case.
Local Explanation: High-Risk Patient (P=0.85)

Gestational Age (24 Weeks)

Pre-Pregnancy BMI (21.5)

Age (19 years)

Dietary Diversity Score (3 {Low))

Parity (3) { @
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MUAC (18.5 cm)

o
ol _
59
o
]
o

02 04 05 06
SHAP Value (Impact on Mods! Output)

The sixth and final graph, the Model Robustness plot.

Model Robustness: AUC Stability across CV Folds This
plot is critical for wvalidating the stability and
generalizability of the proposed system. It shows that the
Hybrid Ensemble maintains a high mean AUC (approx.
0.92) with minimal fluctuation across the five cross
validation folds. The narrower band of scores for the
Hybrid Ensemble, compared to the LightGBM base
model, confirms the architectural advantage of stacking
in reducing model variance and improving robustness

when deployed to handle new, unseen patient data.
Model Robustness: AUC Stability Across CV Falds

AUC-ROC Score
x

Hybrid Ensemble (Mean AUC: 0.920)
=¥~ LightGBM (Mean AUC: 0.852)

Fold 1 Fold2 Fold 3

Cross-Validation Fold

Fold 4 Fold 5

Key Findings from Comparison

The comparison demonstrates that the hybrid stacking

approach successfully leverages the strengths of its

component models:

e Superior Discrimination: The Hybrid Ensemble
achieved the highest AUC ROC (0.92), confirming
its ability to accurately rank patients by risk.

e Optimal Balance: The highest F1 Score (0.80)
shows the model effectively minimizes both false
negatives (missed cases, or low Sensitivity) and
false positives. The high Sensitivity (0.85) indicates
the model is highly effective at identifying true
cases of high risk malnutrition.

e Best Reliability: The exceptionally low Brier Score
(0.04), resulting from the post hoc Isotonic
Regression, confirms the superior reliability and
trustworthiness of the Ensemble's predicted

https://ijctjournal.org/

probabilities, making the output directly actionable

for clinicians.
5. Conclusion and Future Directions
This study successfully introduced and validated a novel,
operationally ready Lightweight Hybrid Ensemble
Stacking framework for the accurate and transparent
prediction of antenatal malnutrition risk in women
attending decentralized primary care clinics [Sinha &
Devi, 2021]. Addressing the dual challenge of high
performance modelling and constrained computing
resources, our methodology combined the high
discriminatory power of non-linear LightGBM with the
stability and probabilistic reliability of Logistic
Regression via a simple meta-learner. The empirical
results conclusively demonstrated the system's superior
capability in risk stratification, achieving a mean AUC
ROC of $0.92$ and an optimized F1 Score of $0.80%,
significantly surpassing all tested single learner baselines
[Wang et al., 2020]. Crucially, the final output was
meticulously calibrated using Isotonic Regression,
yielding an extremely low Brier Score of $0.048$,
ensuring that the predicted risk probabilities are
statistically reliable for clinical action [Zadrozny &
Elkan, 2001]. The integrated SHAP based explainability
framework, utilizing fast approximations, provides
essential transparency, validating the model’s reliance on
clinically relevant features such as MUAC and
Haemoglobin and delivering immediate, patient specific
rationales to clinicians at the point of care [Lundberg &
Lee, 2017].The fundamental contribution of this work
lies in successfully marrying algorithmic sophistication
with deployment pragmatism. By designing the system
for low compute inference and integrating a robust
governance lifecycle that includes continuous feature
drift detection and a structured clinician feedback loop,
we have provided a solution that is not only accurate but
also sustainable and ethically accountable over the long

"~ term. This scalable architecture empowers healthcare

providers to transition from reactive treatment to
proactive, data driven intervention, ultimately promising
improved maternal and infant health outcomes in
resource constrained environments. Future work should
focus on prospective validation of the system in a real
world, multi-site deployment, evaluating its longitudinal
impact on clinical referral rates and patient outcomes.
Furthermore, integration with decentralized mobile
health platforms should be explored to maximize
accessibility for community health workers.
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