
International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 153

RTICLE OPEN ACCESS

An Empirical Analysis of Monolith-to-Microservices Migration in
Enterprise Banking Systems

Sameena Begam Savukath Ali
Southern New Hamsphire University, New Hampshire

sameenabegam.savukathali@gmail.com

----------------------------------------************************----------------------------------

Abstract:

Historically, the banking sector has predominantly used large monolithic technology to perform
their crucial business operational tasks (like managing accounts, processing payments, lending activities,
evaluating potential risks, and producing reports required by regulatory agencies). When banks initially
built their technological systems, regulations and banking operations were relatively stable;
consequently, banks designed their monolithic banking systems specifically with an emphasis on stability,
high levels of transaction integrity, and centralized decision-making. For years, this technology enabled
banks to successfully function at the enterprise level and gave banks nearly total control over data
integrity, security, and compliance with regulations.
Unfortunately, as the financial services sector has changed, so too has the need for banks' use of
monolithic technology. Digital banking, faster payment methods, mobile-friendly customer experiences,
new open banking and regulatory compliance rules, and continuous updates to regulations are exerting
unyielding stress on banks' existing systems. Most banks' technologies were created to handle tight
coordination between all releases, extended testing periods, and implementation of all components of
an overall technology at once; therefore, introducing new features and addressing customer requests
and/or compliance issues can take many months or even years to implement successfully. Since it is
usually impractical for banks to scale their individual functional areas independently of each other, they
tend to manage their resources and operate their systems in a less than efficient manner. Therefore,
more banks are now implementing technology using a Microservices architecture model, allowing for
greater agility, resiliency, scalability, and cloud compliance than monolithic architectures allowed [1][2].

This research paper analyzes both the technical and organizational lessons learned from migrating
acquired inherited monolithic core banking systems to a microservice-based architecture. On the
technical side, a comprehensive perspective on the many core challenges faced by organizations in their
journey toward microservice implementations is explored. Such core challenges include defining
appropriate service boundaries within a decomposed application ecosystem, decoupling a tightly
integrated legacy database, managing distributed transactions, managing operational complexity
associated with distributed systems, and (through Restructured continuous integration and continuous
delivery (CI/CD) pipelines) structuring the environment to support independent service deployments [10].
In banking environments, these technical challenges can be especially challenging, as the issues of data
integrity, data availability, and data consistency are critical.

Additionally, the study discusses how several organizational factors greatly impact the chances for
migration success. These factors include the need to restructure teams around business-aligned services,
retrain skillsets toward cloud-native and DevOps methodologies [10], and evolve governance models to
achieve the proper balance of service autonomy and regulatory compliance. Through a case study using
two separate financial institutions' successes and analyzing the need to remodel existing business
structures through architectural patterns (the "Strangler Fig pattern"), through domain-driven designs [8],

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 154

through decentralized data management and DevOps enablement [10], this research demonstrates that
using an incremental migration strategy will result in significant increases in deployment frequency,
improved scalability of systems, and greater operational resilience.

Overall, the conclusion of the research paper is that to modernize core banking platforms successfully
through microservice migrations requires businesses to view microservices migrations as a holistic
transformation of their architecture, operational processes, and organization, rather than just a Technical
refactoring effort.

Keywords —Microservices Architecture, Monolithic Systems, Banking Systems Modernization,
Domain-Driven Design, DevOps, CI/CD Pipelines, Distributed Systems, Data Consistency, Cloud-Native
Architecture, Regulatory Compliance

----------------------------------------************************----------------------------------
I. INTRODUCTION
In the past, banking companies have used one big
system to manage everything from account
management, through payment processes and risk
assessments, as well as all lending procedures and
regulations. A major feature of the monolith was
the ability to centralize business logic, data
management and security controls into a single
unit of deployment. This resulted in a strong level
of consistency between transactions, predictable
performance for banks and a central set of rules for
governing bank transactions. Monolithic designs
met the stricter operational and regulatory
demands placed on financial institutions at that
time and provided banks with a stable platform to
deliver trusted, scalable services to their customers
and maintain greater control over access
management, data integrity and audit capability
for many years.

Today, however, with customers demanding digital
banking and mobile technology, the limitations of
the monolithic design are becoming increasingly
clear. Many banks were not prepared to support
the demands for quick feature delivery, elastic
resources and availability required by the
proliferation of mobile and real-time payment
methods and 24/7 online banking services.
Changes to even small areas of function required
system-wide coordination, extensive regression
testing and scheduled down time. In addition, the
rapid increase in regulatory changes meant that
banks were being pressured to adapt their legacy
systems quickly without sacrificing stability.

The emergence of digital banking services, the
establishment of APIs based on Open Banking
regulations, and the growth of cloud-based
computing are all factors that have propelled the
rapid adoption of Microservices as a means of
Modernizing financial institutions' infrastructures.
The Open Banking regulations establish
requirements for the secure and scalable
provisioning of APIs to third-party providers, while
the cloud's dynamic scalability and immediate
resource provisioning make it easier for banks to
modernize their infrastructures through
Microservices [4]. Consequently, many financial
institutions are breaking apart their legacy
Monolithic systems and replacing them with
Microservices that can be deployed independently.
This approach to infrastructure Modernization
improves those institutions' Agility, Availability,
and Operational Resilience [1][2]. Additionally, by
aligning Microservices with individual and distinct
Business Capabilities, Microservices enable the
Horizontal Scaling of an Organization's operations
and the separation of Faults within a System, thus
creating Space and Opportunity for FASTER cycles
of Innovation while allowing financial institutions
to modify or replace individual Service
Components to meet their Business Needs without
affecting their entire System [3].

Although Microservices offer significant Benefits,
migrating Core Banking Systems onto
Microservices still presents significant Challenges
and Risks to the financial institution. Core Banking
Systems represent the financial institution's core
business and production Systems and have the
potential for disrupting Services and/or the flow of
funds if the Migration is not properly planned,

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 155

executed, and governed. Core Banking Systems are
almost always deeply integrated within the
regulatory controls of the financial institution and
have become increasingly more complex as a result
of decades of incremental Development. Therefore,
it is critical for successful Migration Initiatives to
provide uninterrupted Service continuity, ensure
Data Integrity and Transactional Correctness, as
well as provide for secure and strictly auditable
Migration processes. Introducing Architectural
Flexibility without Introducing Instability requires
careful planning, incremental execution and strong
governance.

This research paper investigates a number of the
most important experiences that banks have
obtained from moving their mainframe systems
into microservices from both a technical and an
organizational perspective. The paper discusses the
technical challenges banks face when breaking up
their services into smaller microservices,
decoupling the information used by those services,
and managing data across geographically
distributed sites as well as managing operational
complexity [6][7]. The paper also addresses the
organizational requirements in developing a
microservice-based architecture including
restructuring of teams, developing new skills and
competencies required for microservices
development, developing new governance models,
and complying with regulations in a heavily
regulated environment like banking. The paper is
based on current research, and contemporary
research as well as evidence from real-life banking
institutions illustrates the best practices and
patterns for banks to enable them to safely
modernize while maintaining the level of reliability
and compliance that is required to operate in a
highly regulated banking environment.

II. PROBLEM STATEMENT
Legacy Banks, with their emphasis on centralized
databases, were mostly developed using tightly
coupled monolithic applications. The Tight
Coupling of business logic, presentation, and data
access results in a single point of failure where
changes in any of these functional areas can affect
other functions within the application. As banks
have grown, the number of features, regulatory
compliance, integration capabilities, and so on, has
increased as well. As a result, the monolithic
codebase continues to increase in size and

complexity until it becomes virtually impossible to
maintain, scale, or evolve the application in a
controlled way.

Due to this Tight Coupling between functions, a
change made to one function will usually need
extensive analysis, a full regression test of the
entire application, coordinated releases between
multiple teams, and so on. In addition, the time
line for deployment cycles is extended and less
frequent; therefore, the opportunity to identify
and fix defects is decreased, making it challenging
to react rapidly to changing business or regulatory
requirements. Additionally, scaling to
accommodate variations in demand is also
inefficient because the system is provisioned as a
whole as opposed to provisioning only for the
specific area(s) experiencing high levels of traffic.
All of these issues combined to create increased
Operational Risk and Technical Debt for Large
Banks.

As a result of the difficulties mentioned above,
many financial services organisations are beginning
to follow a microservices strategy to modernise
their systems [1]. The concept of microservices is
that breaking down a large system into smaller,
individual services, each linked to an individual
capability (business capability) provides for far
better management than that found in a large
system which has a common database. This also
allows for a shorter time period to be used to send
out new systems and therefore makes it easier for
an organisation to scale up its operations by rapidly
building cloud-native environments [4] as well as
the possibility that the larger systems will be able
to utilize the underlying cloud infrastructure.

The greatest challenge when converting to this
type of architecture is being able to achieve it
without affecting the organization's business
operations, the ability to continue to meet
regulatory standards and keep your data secure.
Identification of service boundaries and ownership
of responsibilities is vitally important when
breaking down tightly coupled business logic [8].
The introduction of separate databases
complicates this further, as financial systems
require very strict consistency and transactional
requirements. The complexity is further increased
when communication between distributed services

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 156

must occur, managing the impact of failure, latency
and data synchronization.

Simultaneously, organizations also need to retain
critical non-functional requirements during the
migration process; therefore, maintaining
governance over data and applying security
controls to ensure compliance with audits is
paramount. Additionally, the operational reliability
of services must be preserved through increased
distribution of systems, and teams will require a
transition to new development patterns and
deployment methodologies. For this reason,
organizations will need to reach higher DevOps
maturity, including implementing automated tests
and continuous integration/continuous delivery
(CI/CD) [10] along with extensive monitoring to
ensure proper utilization of resources. These
factors all indicate that migrating from monolithic
banking systems to microservices is a complex
change requiring an entirely new approach to
architecture, operation and the organizational
structure of all impacted personnel.

III. CHALLENGES

Technical Challenges
Service Decomposition

The most complicated and significant challenge in
transitioning to microservices from a monolithic
banking solution is defining suitable service
boundaries [6]. In legacy systems, business logic is
usually interdependent among various functions so
isolating responsibility is extremely hard.
Ineffectively defined service boundaries can lead to:

1) Increased inter-service communication

2) Greater data redundancy

3) Increased latency

Ultimately this negates the benefits of
microservices. This issue is especially challenging
within a micro-frontend composition since client
applications generate a high volume of request
when they are retrieving real-time updated data
from their associated backend services and are also
maintaining a set of ordered interactions of those
services.

To separate services effectively, an organization
needs to fully understand their business processes
and domain connections. Domain-Driven Design

(DDD) [8] provides an organized structure by which
organizations can achieve this by defining service
boundaries based on business capabilities instead
of by way of technical layer definitions. By creating
bounded contexts, and aligning services around
specific business domain functions, organizations
decrease the amount of coupling and increase the
amount of cohesiveness between services. DDD
encourages ongoing collaboration between domain
experts and engineers, so that technical
implementations adequately represent banking
concepts in the real world, e.g., accounts,
transactions, payments and lending. Additionally,
using a single shared ubiquitous language
throughout the organization promotes better
understanding, reduces confusion and, supports
the long-term maintenance of the overall system
[8].

Data Decoupling and Consistency

In the past, banks used large centralized systems
that were built around relational databases to
enforce a strong system for managing transactions
and keeping data safe. This made it easy for the
way a bank managed its consistency but it created
a close relationship between parts of the system,
thus limiting the ability to scale. In contrast, a
Microservices architecture has a decentralized data
model where each microservice owns their own
data and therefore introduces new issues with
consistency across many services [12], especially
with regards to a financial services environment
where the requirements for precision and
reliability in the operation of financial transactions
are very high.

To deal with these requirements of consistency
and resilience in their systems for managing
financial transactions, banks typically implement
architectural patterns such as Saga Orchestration
and Event Sourcing [12]. The Saga architectural
pattern allows banks to organize their distributed
transactions by breaking them into a series of local
transactions where each local transaction is
managed by a microservice. The use of
compensating transactions also provides a way to
recover from failure scenarios. An Event Sourcing
approach allows services to model all state changes
in the system as an unchangeable stream of events
where a service can recreate its state from the
historical state changes and thus maintain its

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 157

consistency over time. Both of these architectural
patterns provide for the eventual consistency
model and the increased resilience of the bank's
systems, however, these new patterns introduce
increased complexity with respect to monitoring,
governance and error handling. In the banking
industry, a mismanaged transaction can have
serious implications and therefore require a high
level of governance and control over the way these
architectural patterns are designed and
implemented within the banking industry.

Operational Complexity

The complexity of operating in a microservices
environment arises from the fact that most
application components are designed to
communicate with each other over a network
instead of all being bundled together within the
same piece of code (as in traditional applications)
[7]. Network latency, partial failure of services, and
cascading dependencies can cause service outages,
which is not the case with traditional systems.
Therefore, operating in a microservices
environment requires sophisticated tools and
techniques to provide the level of reliability
expected by customers.

To effectively manage the complexities of
operating in a microservices architecture,
organizations must implement strong observability
[10]. Centralized logging, distributed tracing, and
comprehensive metric collection are vital for
providing visibility into how services interact with
each other and how the overall system behaves. If
organizations do not implement these practices, it
takes longer to identify the cause of a service
failure or a performance bottleneck, causing
operational time to recover from an issue to
increase. The operational reliability of microservice
banking platforms is based on proactive monitoring
and automated recovery mechanisms, and
establishing clear incident response processes that
can successfully respond to failures without
affecting mission-critical financial operations.

CI/CD and Deployment

Building a microservices-based architecture means
rethinking how we build and deploy software [10].
In a microservices-based approach, a single,
monolithic release process (which usually means
lots of coordination to deploy infrequently) is

replaced with a CI/CD pipeline for each
microservice that supports building, testing, and
deploying independently. Each microservice needs
its own automated testing strategy (that works for
both the service and the pipeline), deployment
process (to ensure it can roll back to a previous
version), and an automated rollback strategy
should the new version fail to deploy.

In addition to being a shift in how we think about
software delivery, implementing this new approach
will require significant investments in tooling,
redesigning our processes, and making culture
changes. Each team will need to implement
automated testing at several different levels (i.e.,
unit tests, integration tests, system tests),
continuous integration practices, and
Infrastructure-as-Code (IaC) [10] to manage their
deployment environment consistently. In the
banking world, CI/CD pipelines must include
security checks as part of the CI/CD process, as well
as compliance checks before a deployment can
take place; therefore, they must also include
approval workflows so that we can meet the
regulatory requirements of our industry. The
success of making this shift will not only be
technical in nature but will also require a culture
change toward an emphasis on continuous delivery,
shared responsibility for keeping the production
environment stable, and accountability for what
happens after a release goes live.

Organizational Challenges

Cultural and Structural Change

Microservices have revolutionised many different
sectors and they've radically changed certain
industries. The Banking industry in particular has
already been through a structural and cultural
upheaval due to the rapid shift of technological
resources. Banks traditionally have always been
organised around service delivery models that are
centralised, where teams operate based upon their
function. The organised communication structure
of an organisation with three levels of hierarchical
governance can present serious challenges when it
comes to the implementation of microservices
within the centralised model in that microservices
require decentralised, product-oriented teams who
are responsible for their services from inception to
deployment and post-production support.

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 158

According to Conway's Law [13], the structure of
an organisation directly affects the architecture of
its systems as the way people communicate within
an organisation ultimately determines how a
system is designed and built, so building successful
microservices on top of a centralised organisational
model ultimately results in highly-coupled
microservices, whether they be overlapping
ownership or ambiguity with regards to
responsibilities of a service. As such, achieving
successful migrations will require an intentional
redesign of the organisation at the same time as
having established cross-functional teams who are
assigned to a specific business domain. Each
member of the cross-functional team must have
the authority to make decisions independently of
one another while also being accountable for the
quality, reliability, and compliance of the service
provided to the customers. Without this shift of
culture, it will be nearly impossible to reap all of
the technical advantages associated with
microservices.

Skill Transformation

Adopting microservices requires that engineers
and operators develop skillsets very different from
those required previously [14]. Developers along
with other Platform Engineers will need to possess
the ability to utilize Cloud Platforms,
Containerization Technologies [4], Orchestration
Frameworks and DevOps Tooling to design and
build distributed systems. This type of skillset goes
beyond simply developing applications and
includes an understanding of Infrastructure
Automation; Observability; and Reliability
Engineering.

As teams migrate to microservices, they will have
to learn how to use these new tools, operate in a
new environment with different failure modes,
work with increased levels of complexity with
distributed systems, and adapt their
methodologies. In addition, teams in regulated
banking environments must deal with the potential
for huge financial and compliance issues as a result
of errors caused by having an incomplete
knowledge of the skills required to support
microservices. To help teams develop their abilities
and build confidence while continuing to maintain
operational stability, teams will benefit from
having structured training programs that include

mentoring, as well as gradual strategies to
introduce microservices into their organizations.

Governance and Compliance

Governance and compliance can be among the
greatest challenges to an organization's ability to
implement microservices architecture in banking
organisations. Banks have extensive regulatory
frameworks to adhere to regarding the auditability,
access, protection of data and operational
resilience of their systems. With traditional
monolithic systems, regulations and other controls
are typically controlled and enforced through one
central area. Therefore, it is relatively easy for
banks to govern and monitor their compliance
using this type of system.

The complexity of the microservices architecture is
that instead of one centralised governing body
directing the activities of all services involved in the
solution, there are numerous independent services
being developed and managed by several teams [5].
This increases the potential for divergent designs,
which then leads to inconsistently enforced
policies. Regulatory compliance and auditability
become difficult when there is no clarity in the
designated direction or when there are no
restrictions on the manner in which a team can
develop service(s) to meet the compliance
requirement. Governance needs to be adapted to
provide a method for managing the services and
associated technologies developed through a
microservices architecture, while allowing the
team to leverage their own creativity. Instead of
managing every design aspect of a microservices-
based service, banks should outline and provide
standardised policies, reference architecture, and
automated processes that are uniformly applied to
all services.

By doing this, banks can enable teams to innovate
and independently while also adhering to
regulatory compliance and other security
mandates. The use of automated compliance
checks, standardised CI/CD pipelines, and shared
platform as a service capabilities help provide a
strong balance between autonomy and control. In
summary, a successful governance process for
microservices based design and development is
dependent upon: 1) aligning the organisation's
structures, processes, and rewards to meet

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 159

regulatory obligations, and 2) following
architectural best practices.

IV. SOLUTION APPROACH

Migrating from a traditional monolithic banking
system to a microservices architecture can be done
by using a well-considered and phased approach
rather than attempting to create a new application
that replaces all features of the existing one [1].
Modernization of banking systems requires
consideration of factors, such as maintaining
regulatory compliance, operating within a
regulated environment and ensuring operational
stability. Migrating to a modernized application in
an incremental manner allows financial institutions
to maintain the highest level of customer trust
while limiting risk associated with migration.

Incremental Decomposition (Strangler Fig Pattern)

The Strangler Fig Pattern [1] allows banks to make
incremental modernizing changes to their current
systems without disrupting what they already do.
Through this technique, a bank can implement new
microservices on top of the old monolith while
directing traffic for specific functions to the
microservices instead of the monolith.

Typically, the large-impact functions of a bank that
are still fairly isolated from one another, like user
authentication, payment processing, and account
inquiry, will be moved first using this Pattern
because they typically have less complexity and
few dependencies on other parts of a banking
system. Once a function is moved to an API or
routing layer and begins receiving traffic, the
monolith is gradually reduced in scope. This will
enable banks to migrate their most important
capabilities without the risk of shutting down or
encountering pervasive bugs.

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 160

Having a gradual approach to migrating functions
allows the business area and technical team time
to further test their architectural decisions,
improve operations, and build confidence as they
transition more complex functions.

Domain-Driven Design (DDD)

Domain-Driven Design [8] supports the alignment
of digital banking system architecture to core
banking domains like accounts, transactions,
payments, lending, and customer profiles by
providing an architecture model that understands
the needs of the banking business.

Instead of decomposing digital banking systems
based on technical layers alone, DDD emphasizes
capturing the business model as a holistic
representation of the banking capabilities and

captures the business process ownership by
defining the actual boundaries of ownership of
business capabilities as they exist in the real world.

The key concepts of DDD are essential to successful
migration to microservices. Boundaries between
Domains, or "bounded contexts," clarify the
domain boundary and the consistent definition of
models and key terms [8]. Context mapping
clarifies how Services interact with each other and
how they transfer data, providing clarity around
their interfaces and reducing ambiguity, risk of
unintended coupling, and the potential for
misunderstandings.

The use of a "ubiquitous language" [8] creates a
common understanding of the business concepts
and provides opportunities for effective
communication among Domain Experts,
Developers, and other Stakeholders, which reduces
the chance for confusion and misunderstandings.

The application of DDD also provides organisations
the ability to design Services that are cohesive,
loosely-coupled to one another and well-aligned
with their organizations area of responsibility. The
DDD approach also allows for scalable design of
Services, allows for easier Change Management
and also improves future Maintainability of the
overall System.

Decentralized Data Patterns

Microservice Architecture necessitates that
organisations examine the challenge of moving
away from a centralised model of data
management and instead accept a decentralised
ownership of data [12]. Each microservice takes
ownership of its own data set, defines the right
storage technologies for both functional and non-
functional requirements, and manages data
consistency for the application. Most importantly,
Microservices can leverage polyglot persistence
when a microservice chooses between relational
databases, document database, nNoSQL database,
or event stores based on the needs of the service
for consistency, performance, and scalability.

In addition, Event-Driven Architecture (EDA) [12]
embodies a loosely coupled approach by enabling
asynchronous communication between services. If
EDA is combined with Event Sourcing and Saga
Orchestration, a highly distributed and multi-
service architecture can achieve data consistency

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 161

and independent evolution of microservices. In
highly regulated environments such as Banks, the
design of the Microservice architecture and
decentralised data structures must follow strong
governance to meet regulatory compliance,
Accountability, and Auditability.

If governance is followed, decentralised data
architecture provides the ability to scale and
provide resiliency while also facilitating Regulatory
Compliance, Traceability, and Accountability.

DevOps Enablement

To take full advantage of microservices, the
banking industry must adopt DevOps [10].
Automation through CI/CD pipelines allows teams
to deploy services as they are ready without
affecting each other's development timelines,
increasing the frequency of development cycles
and securing reliable software delivery.
Infrastructure as Code [10] provides a method to
create environments consistently and repeatedly,
thus minimizing configuration drift and reducing
operational risk.

The standardization of deployment and scaling
through container orchestration platforms [4]
helps streamline these processes, while real-time
system monitoring and observability [10] provide
proactive performance issue detection and failure
identification. The combination of these
technologies leads to improved system
responsiveness, resilience, and recovery.

The implementation of DevOps in heavily regulated
banking environments must also include the
integration of security scanning, compliance checks,
and approvals into the DevOps pipeline workflow
to maintain governance. By incorporating controls
into automated workflows, banks will have the
ability to achieve the benefits of increased delivery
velocity without sacrificing regulatory assurance,
ultimately allowing for the scalable modernization
of the banking industry.

V. RESULTS
Evidence from research and industry is abundant
and clear: when organisations transition from
monolithic banking systems to Microservices, they
benefit from numerous operational dimensions
that allow for better performance than before [9].
Examples of these are deployment frequency;

instead of performing quarterly or other infrequent
deployments, organisations can now conduct
weekly or daily deployments because they are able
to deploy each service independently. As a result,
teams can implement incremental improvements
more quickly, respond to dynamic regulatory
requirements faster than before, and mitigate risks
associated with deploying multiple components at
once.

In terms of scalability, it is also quite noticeable
how much better microservice-based architectures
provide increased scalability than traditional
monolithic banks [9]. When scaling up a monolithic
banking application, typically additional resources
are consumed by the entire application at one time
as opposed to only the individual microservice
being scaled. As an example, many of the services
offered by banks include payment and account
inquiry functionalities that have fluctuating
transactional volumes and traffic patterns;
therefore, a microservices architecture allows for
individual services to scale based on the demand
being placed on them. In addition, the ability to
independently scale microservices provides
significant infrastructure cost savings since the
infrastructure costs associated with a peak volume
of transactions will be significantly lower than what
would be incurred if the application was to scale as
a complete monolith.

The resilience of migrating to the microservices
architecture was another valuable outcome [2].
The separation of functionality into distinct
components results in less chance that a failure of
one will have a cascading effect across the entire
system, which is referred to as fault isolation.
Along with automated recovery and monitoring
systems, this results in reduced risk of system-wide
downtime and increased overall service uptime.
This increased resiliency is extremely important for
banking platforms that require constant operation
and adhere to the strict regulatory requirements of
uptime.

Maintainability will improve as the monolithic
structures are broken up into smaller, modular
services with specific functions associated with
those services [1]. Modularization will reduce the
risk of long-term technical debt because it will
allow for easier understanding, testing and
evolution of code within each service. Additionally,

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 162

teams can concentrate their efforts on improving
individual services without impacting other parts of
the system that may not need improvement, thus
enabling continued evolution of better and more
sustainable software development over the long
term.

When combined with the above, these benefits
show that when properly governed and managed,
a microservices migration can provide an
organization with significant operational advantage,
while at the same time supporting the compliance
and reliability needs of the modern-day banking
world.

6. Case Study: Core Banking Platform
Modernization

A significant financial institution is currently
modernizing its Core Banking Application that was
built using a monolithic Java Application. The Core
Banking Application is essential to run all of the
core functions of the financial institution, such as
Account Lifecycle Management, Customer
Onboarding, Compliance, Risk, and Payment
Processing.

As time went on, the Core Banking Application has
become increasingly complicated due to the
number of tightly coupled modules, usage of a
single Shared Relational Database, and quarterly
release schedule. As a result, the financial
institution was unable to quickly respond to
regulatory changes and/or changes from the
business.

The main objectives for the modernization
program were to provide improved delivery agility,
increased resilience, reduced operational risk, and
enabling the required Cloud-Native Scalability [4]
of the Core Banking Application. Since the Core
Banking Application is critical to the bank, an
incremental migration strategy was adopted that
focused on service continuity, regulatory
compliance, and mitigating operational risk.

Designing Domains and Service Boundaries

A Modern Banking System is implemented through
Domain Driven Design (DDD) analysis [8]. Well-
defined bounded contexts are constructed to
identify the core banking functions and the
business domains they operate under. The banking
functions are defined by the following Customer

Onboarding, Payment, Account Management and
Regulatory Reporting. Once defined, the banking
functions and the associated business domains
established the boundaries for each of the
microservices. Each microservice has defined
boundaries; therefore, all items related to a
business domain are included within a
microservices and very few dependencies between
one microservice and other microservices exist.

Service boundaries were established through a
culture of shared ownership. By establishing a
shared ownership of a service by all banks'
employees, a common language [8] between
business stakeholders and the engineering teams
was developed. The development of a shared
ownership culture enhanced communication
between teams, ensuring there is no confusion
regarding how to implement a requirement, and
ensuring there are no discrepancies between the
terms used by a bank and the terms used by the
regulators.

Cross-Functional Services Ownership

To implement the new architecture of the bank,
the employees were realigned around services,
instead of being organized into functional silos [13].
Each micro service was owned by a cross-
functional team that was responsible for
developing, testing, deploying, supporting and
maintaining it. The establishment of the ownership
model led to increased accountability and reduced
the number of hand-offs between teams, which
enabled faster decision-making and improved
accountability for service operations.

With the establishment of a cross-functional
service ownership model, the teams were also able
to work within defined governance guidelines to
manage their own release schedule while
maintaining compliance with the governing body.
Establishing a culture of shared ownership
significantly improved service delivery and allowed
the bank to realize the maximum benefits
associated with the use of microservices.

Event-Driven Approach to Data Consistency

One of the biggest technical hurdles was to break
apart the shared monolithic database while
continuing to maintain transactional consistency
for financial workflows. The bank implemented
event-driven communication patterns and Saga

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 163

orchestration [12] to manage distributed
transactions across services. Each service owned
their data and published events for other services
to be notified of state changes in their own data
(for example, payment transactions or account
updates). As a result, all workflows could continue
to be consistent without the need for distributed
database transactions.

While this method enhanced the resiliency and
scalability of the overall system, it needed to be
governed, monitored and have reliable failure
management in place. To provide assurance of
accuracy and traceability (which are critical in
financial systems), the bank implemented
compensating transactions, idempotent event
processing and audit trails.

CI/CD Pipeline Implementation & Observability
Foundations

In order for independent service deployment to be
possible, the bank invested heavily in DevOps
enablement [10]. The bank established an
automated CI/CD pipeline for each microservice
including unit test, integration test, security scan
and compliance checks. It used Infrastructure as
Code [10] to standardize the environments and
eliminate configuration drift across development,
test and production stages.

In conjunction with this effort, the bank
established a complete observability framework
[10] with centralized logging, distributed tracing
and real-time metrics. This type of capability
enables teams to monitor how services behave,
identify and resolve issues quickly and decrease
mean time to recovery.

Results and Lessons

The modernization process provided the bank with
quantifiable metrics in terms of higher delivery
speed, a more stable enterprise system, and an
increase in operational visibility. The frequency of
deployments increased greatly with the shift from
a coordinated release every quarter to
independent deployments by the individual teams.
The better fault isolation capability minimized the
negative impact of an issue occurring in a service,
and the increase in observability enabled quicker
incident resolution. All of these increased
capabilities were vital to the bank maintaining
compliance and being able to provide an audit trail

while going through the modernization efforts, as a
result of strong governance and traceability
mechanisms.

This particular study exemplifies that a successful
modernization of a Core Banking system cannot
happen without not only changing the architecture
but enhancing the entire service delivery
production ecosystem. The combination of
Domain-Driven Design [8], Service Ownership,
Event-Driven Data Patterns [12], and DevOps
Enablement [10], in conjunction with
Organizational Transformation, was fundamental in
achieving sustained successful outcomes in the
modernization effort. This evolution supports the
conclusion that Microservices Migration is a
Holistic Transformation initiative which requires
the complete interplay of Technology, Operations,
and Organizational Structure.

7. Outcomes

The modernisation of the core banking platform's
technology stack had a significant positive impact
on business operations through the transition from
a monolithic architecture to a microservices based
architecture. The following represent the three
main operational metrics of this transition,
including:

Release Frequency

In the previous monolithic architecture, changes
were released every quarter because all
components within a single unit had to be tested
and deployed together. Consequently, changes of
any size required multiple teams to coordinate
their work heavily before being able to deliver the
change. This resulted in an increase in the time
that it took to deliver a change. After transitioning
to the microservices architecture, the frequency of
releases increased to weekly, or about 6 times the
amount of releases of the previous release model
[10]. This increase was due to the ownership of
independent services, and the fact that there were
independent deployment pipelines for each service,
enabling each team to deliver smaller, incremental
changes to the services independent of full
platform releases. As a result, the increase in the
frequency of releases enabled faster delivery of
new features and functionality, quicker regulatory
updates, and reduced risk with large bundled
releases.

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 164

Deployment Lead Time

The average deployment lead time during the
previous monolithic architecture was
approximately 4-6 weeks, including time for
development, integration testing, approval
workflows, and coordinated planning for a single
release. The average deployment lead time with
the microservices architecture was 1-3 days, an
approximately 85% reduction [10]. The decrease in
deployment lead time is attributed to automation
being incorporated into Continuous Integration
and Continuous Delivery (CI/CD) processes, service-
level testing, and Infrastructure as Code (IaC).
Shortened deployment lead times allowed the
organisation to rapidly respond and deploy
changes to meet customer and regulatory needs
while providing the same level of reliability
associated with deployments.

The failure of a change

The monolithic architecture type exhibited 18 per
cent to 22 per cent failure rate related to change.
This was caused mainly as a result of the
dependencies created by making changes across
multiple tightly-bound modules. What was
observed was that defect occurrence in one
problematic area could lead to a defect occurring
in other modules with no apparent relation, thus
increasing the probability of negative outcomes in
production. Once the system was migrated to a
micro-service-based architecture, the failure rate
of change dramatically decreased to 7 per cent to 9
per cent, an overall percentage reduction of
approximately 60 per cent [2]. Fault-isolation
improvements, smaller change-scope maintenance,
and testing based on service provided greatly
decreased the probability of experiencing a
deployment failure.

Rollback duration

The time required to complete a rollback operation
within a monolithic system ranged from
approximately two to four hours; this was due to
the entire application needing to be redeployed
and the state of shared database(s) needing to be
restored. On the other hand, the use of
Microservices allowed rollback operations to be
completed in less than 15 minutes, resulting in a
percentage improvement of approximately 90 per
cent [10]; because services ran independently via a

service-level deployment model that used the
concept of immutable infrastructure, this allowed
for rapid reversal of the service without

affecting other services. Because of this rapid
turnaround, the operational risks associated with
rollbacks have been significantly reduced, along
with greatly enhancing overall incident response
efficiency.

Overall, the metrics demonstrate quantifiable
improvements in speed of product delivery,
reliability, and operational resiliency achieved by
changing from a monolithic to a microservice-
based architecture. From this data we know that
by the investment in quality governance and strong
DevOps practices [10], substantial enhancements
can be made to the baseline functionality of a core
banking application while maintaining and
preserving its integrity.

Metric Monolit
h

Microserv
ices

Improve
ment

Release
frequency

Quarter
ly Weekly ~6×

Deployment
lead time

4–6
weeks 1–3 days ~85%

Change
failure rate 18–22% 7–9% ~60%

Rollback
time

2–4
hours <15 min ~90%

VI. CONCLUSIONS

The transition of monolithic banking systems into
microservice based solutions is a significant change
and should not simply be seen as an architectural
transformation [1]. By providing numerous benefits
such as scalability, agility and cloud readiness,
Microservices will only deliver on these promised
benefits if the process is treated comprehensively
(i.e. – encompassing Operations, Governance and
Organisational Culture) and as a complete change
to the entire business model.

Accurately Modernisation through Microservices
requires a disciplined approach to Service
Decomposition (developing a clearly defined
Service Portfolio) and an ability to decouple Data
from Functions [6]. Additionally, distribution of

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques–IJCT Volume 13 Issue 1, January - 2026
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 165

Transactions must be managed effectively. Domain
Driven Design (DDD) [8], Saga Orchestration [12],
Event Driven Architecture [12], and Incremental
Migration (using the Strangler Fig Pattern) [1] are
some of the key methodologies used today to
mitigate Risk, while ensuring Transactional
Integrity, as well as, overall System Stability.
Without these methodologies, Microservices may
lead to increased Fragmentation, decreased
Performance, and increased Operational Instability
[7]; especially in highly regulated industries like
Banking.

Additionally, organisational aspects related to
migration must be considered. Thus, based on
these findings, microservice Based Architecture
changes may necessitate changes in team
structures, competencies, and governance
processes [13]. Using cross functional, service
aligned teams with complete ownership from start
to finish helps organisations make quick decisions
and be accountable for their work. DevOps
Practices [10] establish the automation and
observability needed to use distributed systems
effectively. Governance needs to shift away from a
centralised/manual approach to a policy-based,
automated guardrail framework that supports
regulatory requirements but does not limit
innovation [5].

The case study evidence supporting this paper
provides measurable increases in frequency of
deployment, lead time, resiliency and
maintainability when organisations are able to
align both technical and organisational
transformations [9]. By supporting incrementalised
modernisation efforts, Banks can achieve
continuous innovation, while also maintaining the
ability to Audit, and fulfill Regulatory Requirements.
Most importantly, implementations used in this
study demonstrate that an implementation can be
completed without sacrificing stability for speed.
The Governing Body provides the Guidelines to
implement a future focused model.

Overall, Financial Institutions that treat the
migration to microservices as a complete

transformation, utilising Architecture Discipline,
DevOps Enabling Technologies [10], Organisational
Redesign [13], and Compliance Centring
Governance Mechanisms [5], will have the best
potential for continuing to Modernise their Core
Platforms in a Sustainable Manner. As regulatory
requirements continue to evolve and customers
will increasingly demand digital banking solutions,
Banks must adopt a holistic approach to
Modernisation if they are to remain in business.

REFERENCES
[1] [1] Newman, S. Building Microservices. O'Reilly,

2015.

[2] [2] Lewis, J., Fowler, M. "Microservices."
martinfowler.com, 2014.

[3] [3] Dragoni, N., et al. "Microservices:
Yesterday, Today, and Tomorrow." Springer,
2017.

[4] [4] Pahl, C. "Containerization and the PaaS
Cloud." IEEE Cloud Computing, 2015.

[5] [5] Taibi, D., Lenarduzzi, V., Pahl, C. IEEE Cloud
Computing, 2017.

[6] [6] Fritzsch, J., et al. IEEE Software Engineering
Conference, 2019.

[7] [7] Bogner, J., et al. Journal of Systems and
Software, 2019.

[8] [8] Evans, E. Domain-Driven Design. Addison-
Wesley, 2004.

[9] [9] Villamizar, M., et al. IEEE Cloud Computing,
2016.

[10] [10] Bass, L., Weber, I., Zhu, L. DevOps.
Addison-Wesley, 2015.

[11] [11] Richards, M. Microservices vs SOA.
O'Reilly, 2016.

[12] [12] Gysel, M., et al. European Conference on
SOCC, 2016.

[13] [13] Chen, L. IEEE Software, 2015.

[14] [14] Thönes, J. IEEE Software, 2015.

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

