ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

https://ijctjournal.org/

RESEARCH ARTICLE OPEN ACCESS

Al-Assisted Query Optimization in Relational Databases:

A Comparative and Experimental Review
Mohamed Chetouani'

Nanjing University of Information Science and Technology
Email: medchet2015@gmail.com

R kR R R R TR R TR R T R R R R R T

Abstract:

This paper presents a comparative and experimental review of Al-assisted query
optimization techniques in relational databases. The study examines traditional optimization
methods, explores Al-based approaches including machine learning and reinforcement learning,
and evaluates their effectiveness through experimental results.

Keywords— Query Optimization, Relational Databases, Artificial Intelligence, Machine
Learning, Reinforcement Learning, Genetic Algorithms

B Rk R R TR R R R SR R R R SR R R R R Rk

I. INTRODUCTION

Query optimization is a fundamental aspect of
relational database management systems,
ensuring that data retrieval is carried out
efficiently while minimizing resource usage.
Traditional query optimization methods rely on
predefined rules, cost-based analyses, and
heuristic strategies to select execution plans that
reduce response time. Although these
approaches have proven effective in many cases,
they often face challenges when dealing with
dynamic workloads, complex queries, or large-
scale datasets.

The rapid growth of data and the increasing
complexity of applications have sparked interest
in applying artificial intelligence (AI) to
enhance query optimization. Al-based
techniques, including machine learning,
reinforcement learning, and evolutionary
algorithms, can learn from past query
executions, adapt to changing conditions, and
explore optimization strategies beyond
conventional heuristics. By incorporating Al

http://www.ijctjournal.org

into query optimization, database systems have
the potential to improve performance, lower
latency, and manage diverse workloads more
effectively.

This paper examines the role of Al in query
optimization, providing a comparative review of
traditional and Al-assisted methods. It explores
different Al techniques, evaluates their
applicability to relational databases, and
assesses the performance gains they can offer.
In addition, experimental results from recent
studies are analyzed to determine the practical
effectiveness of these approaches. The objective
is to provide a comprehensive understanding of
how Al can advance query optimization and to
highlight the challenges, limitations, and future
directions in this evolving field.

I1. FUNDAMENTALS OF
QUERY OPTIMIZATION

A. Definition and Purpose of Query Optimization
Query optimization is a fundamental process

in relational databases that aims to enhance the

efficiency of query execution. It involves

Page 258

mailto:medchet2015@gmail.com
https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

selecting the most effective execution plan from
a range of possible strategies to retrieve or
manipulate data [5]. The primary role of a query
optimizer is to translate a high-level declarative
query, such as SQL, into an execution plan that
minimizes resource usage and execution time
[4].

Query optimization is particularly crucial in
relational databases because poorly optimized
queries can severely degrade performance,
especially as data volume and complexity grow
[2]. Efficient optimization directly improves
system performance by reducing execution time,
lowering CPU and memory usage, and
minimizing input/output operations. This not
only leads to cost savings but also enhances
throughput and responsiveness for users.

The optimization process generally involves
analyzing different execution strategies,
estimating their costs, and selecting the most
efficient plan [7]. For example, the optimizer
may decide between a sequential table scan and
an index scan depending on table size and query
selectivity. It may similarly choose among join
algorithms such as nested loop join, hash join,
or sort-merge join, based on data distribution
and available resources [18].

By systematically evaluating potential
execution plans and their associated costs, query
optimization ensures that database systems
maintain high performance even under heavy
workloads and complex query conditions [5].
Thus, effective optimization serves as a
cornerstone for the performance and scalability
of relational databases.

B. Query Processing Steps

Query processing in relational databases
refers to the sequence of operations that
transforms a high-level SQL query into an
optimized execution plan. This process ensures
that queries are executed efficiently, minimizing
response time, resource consumption, and
overall cost [4] The main steps in query
processing include parsing, translation, logical
plan generation, physical plan generation, cost
estimation, plan selection, and execution.

http://www.ijctjournal.org

https://ijctjournal.org/

Parsing. The first step in query processing is
parsing. During this phase, the SQL query is
converted into a structured internal
representation, typically a parse tree, which
captures the syntactic structure of the query. The
system also performs syntax checking and
validates semantic correctness, ensuring that
referenced tables and columns exist. This step is
essential, as it provides the foundation for all
subsequent optimization stages [4].

Translation to Relational Algebra. After
parsing, the query is translated into a relational
algebra expression. This logical representation
separates query operations from their physical
implementation, enabling algebraic
transformations that maintain equivalence while
potentially reducing intermediate results or
improving join order [4], [10].

Logical Plan Generation. The logical plan
represents the sequence of operations required
to produce the query result. It is typically
represented as a logical operator tree, including
operations such as selection, projection, and
joins. In this phase, the optimizer may apply
transformations such as pushing selections
closer to the data source or reordering joins to
reduce intermediate costs [4], [10]. As shown in
Fig. 1, the logical plan tree illustrates how
selection and join operations are structured in
the query execution process.

Tahle B

Fig. 1 Logical plan tree illustrating selection and join operations.

Page 259

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

Physical Plan Generation. Once a logical
plan is constructed, the database generates a
physical plan by selecting specific algorithms to
implement each operation. Examples include
nested-loop joins, hash joins, and sort-merge
joins. This phase also considers factors such as
index availability, sorting methods, and system
resources to identify the most efficient
execution strategy [10], [9]. As shown in Fig. 2,
the physical plan tree illustrates the chosen
execution strategy with specific algorithms.

Seq Scan Table B

Index Scan Table A

Fig. 2 Physical plan tree showing the chosen execution strategy with
specific algorithms.

Cost Estimation and Plan Selection. For
each candidate physical plan, the optimizer
estimates associated costs, including CPU usage,
I/O operations, and memory consumption. The
plan with the lowest estimated cost is chosen for
execution. Cost estimation can be performed
incrementally or guided by heuristics to reduce
the search space. Accurate cost estimation and
careful plan selection are critical for improving
query performance [10], [9].

Query Execution. The final step involves
executing the selected physical plan. The query
engine performs each operation in the plan,
potentially employing caching, buffering, or
pipelining techniques to enhance performance.
Efficient execution ensures correct results while

minimizing resource usage and response
time [9].
By understanding these steps, database

designers and administrators gain insight into
how relational systems optimize queries and
why traditional query optimizers are essential
for performance. These steps also form a
foundation for exploring advanced or Al-

http://www.ijctjournal.org

https://ijctjournal.org/

assisted optimization techniques in subsequent
sections.

C. Cost-Based Optimization

1) Definition and Purpose:

Cost-Based Optimization (CBO) is a
technique wused in relational database
management systems (RDBMSs) to select the
most efficient query execution plan by
estimating the “cost” of alternative plans. The
cost typically includes factors such as CPU
usage, disk I/O, and memory consumption,
which are critical resources for query
execution [4], [10], [9].

In CBO, the database optimizer examines
multiple logically equivalent ways of executing
a query, often represented as operator trees. For
each plan, it estimates the required resources to
determine the overall cost. This process allows
the optimizer to choose the plan that minimizes
execution time and system resource usage,
which is especially important for complex
queries involving multiple joins, projections,
and selections [4], [10] .

CBO 1is widely adopted in traditional
RDBMSs, such as PostgreSQL, Oracle, and
SQL Server, because it ensures efficient query
execution and can adapt to variations in data
distribution, index availability, and system
architecture [9], [1]. Without cost-based
optimization, query execution would rely on
heuristic rules alone, often resulting in
suboptimal plans and poor performance.

2) Components of Cost Estimation:

Cost-Based Optimization (CBO) depends on
accurately estimating the costs of different
query execution plans. The total cost of a plan
combines several factors, including CPU usage,
I/O operations, memory consumption, and, in
distributed or parallel systems, communication
costs. The optimizer selects the plan with the
lowest total cost.

e CPU Cost:

CPU cost represents the time required to
process tuples for each operator in a query plan.
It can be calculated as:

Page 260

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

CPU Cost = }; (Tuples; x Cost per Tuple,)

This calculation includes operations such as
selection, projection, joins, and aggregations.
Accurate estimation of CPU cost is particularly
important for complex queries involving
multiple joins [4], [7] .

e 1/O Cost:

I/O cost accounts for reading and writing data
to and from disk, which is often the most
expensive operation in a database system. It can
be estimated by summing the number of blocks
read and written across all operators:

I/0 Cost =)} (Read Blocks;

+ Write Blocks)

I/O cost depends on factors such as physical
data organization, indexing, and buffer
utilization. Applying early selection and
projection can reduce intermediate results,
thereby lowering I/O cost [4], [10] .

e Memory Cost:

Memory cost considers the buffer or memory
used during query execution. For operators like
hash joins or sort-merge joins, it can be
expressed as:

Memory Cost = Memory per Operator
X Number of Operators

Accurately estimating memory usage helps
prevent excessive disk spilling and additional
I/O overhead [7].

e Communication Cost (for
Parallel/Distributed Systems)
In distributed or parallel systems,

communication cost arises when data is

transferred between processors. It can be
modeled as:
tsend = treceive = A + B - .8
where:
e = constant startup overhead for sending a
message

e B =size of the message in bytes
e [= per-byte transmission cost

Partitioning strategies, such as hash-based
joins, aim to minimize communication by
sending only relevant tuples to processors [7].

http://www.ijctjournal.org

https://ijctjournal.org/

e Total Cost

The total cost of a query execution plan is the
sum of CPU, I/O, memory, and communication
costs:

Total Cost = CPU + I/O + Memory
+ Communication

This metric enables the optimizer to compare
alternative plans and select the most efficient
one. Accurate cost estimation relies on
statistical summaries of the data, including table

sizes, distinct values, and histograms [4], [7],
[10].

3) Cardinality Estimation:

Cardinality estimation is a critical step in
query optimization, as it involves predicting the
number of tuples produced by relational
operations such as selection, projection, and join.
Accurate cardinality estimates enable query
optimizers to choose efficient execution plans
and minimize resource usage [10].

e Selection

For a selection operation, where a predicate
is applied to a relation , the estimated number
of resulting tuples is given by:

lop(R)| = |R] - fr
where | | denotes the number of tuples in
relation , and is the selectivity factor of
predicate , representing the fraction of tuples

that satisfy the predicate [10].
e Projection

For projection operations, denoted () ,
which retain only a subset of attributes from
relation , the estimated cardinality depends on
the number of distinct tuples in the projected
attributes:

| ()| = number of distinct tuples in []

This estimation often relies on histograms or
statistics of attribute distributions maintained
within the database [10].

e Join

For join operations, where two relations
and are combined based on equality of
attributes . = , the cardinality can be
estimated as:

Page 261

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

IR - |S]

|[R @ §| =
max((,), (,)

Here, (,) and (,) represent the
number of distinct values in attributes and
of and , respectively [10].

e Multiple Predicates

When multiple predicates Pi, P, ..., Pn are
applied under the assumption of independence,
the cardinality estimation generalizes to:

lopinPon.ap, (RO = |R| - fp - fr, fp,

In practice, this estimation may be inaccurate
when predicates are correlated, which remains a
well-known challenge in query
optimization [10].

Cardinality estimation forms the backbone of
cost-based optimization in relational databases.
By providing approximate sizes of intermediate
results, it guides the optimizer in determining
the most efficient order of operations, thereby
significantly improving query performance [10].

4) Selectivity

Selectivity is defined as the fraction of rows
in a relation that satisfy a given predicate. It
measures how restrictive a selection condition is
on a dataset [4], [10], [19] .

Formally, for a relation
selectivity is expressed as:

where | | denotes the total number of tuples
in , and | ()| represents the number of
tuples that satisfy .

Selectivity plays a critical role in estimating
the sizes of intermediate results during query
execution. Smaller selectivity values,
corresponding to more restrictive predicates,
reduce the number of tuples passed to
subsequent operations. This directly affects
CPU and I/O costs [4], [10] .

Example:

If a selection on a relation containing 1000

tuples produces 100 tuples, the selectivity is:
11UV

= =01
1000

and predicate

http://www.ijctjournal.org

https://ijctjournal.org/

This smaller intermediate result reduces the
cost of downstream operations, such as joins,
because fewer tuples need to be processed [19] .

5) Cost Function Equation

The cost function is central to cost-based
query optimization, offering a quantitative
framework for comparing alternative execution
plans. It aggregates resource consumption into a
single metric, enabling the optimizer to identify
the most efficient plan.

At its simplest, the total cost of a query plan
can be expressed as:

Total Cost = CPU_Cost + I/O_Cost
+ Memory Cost

This abstraction highlights the main
categories of resource usage, but in practice,
each component must be estimated carefully
with system-specific parameters. For example,
CPU cost is typically measured by the number
of tuples processed per operator, I/O cost
corresponds to the number of disk or page
accesses, and memory cost reflects buffer usage
during execution [7].

More advanced optimizers extend this model
to incorporate additional factors, such as
communication cost in distributed or parallel
databases, or buffer utilization to account for
cache hit ratios, index scan locality, and
physical data layout [4]. These extensions
provide more realistic predictions of system
performance.

Importantly, cost functions are not uniform
across all database management systems. Some
systems assign greater weight to I/O cost due to
disk bottlenecks, while others emphasize CPU
or memory usage depending on hardware
characteristics and workload profiles [10]. This
system-dependent weighting ensures that the
optimizer adapts cost models to reflect actual
resource constraints.

In summary, the cost function equation
establishes the foundation for evaluating
execution strategies. While the simplified
formula captures the essential components,
effective optimization requires extending it with
system- and workload-specific parameters to

Page 262

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

ensure accurate and robust

predictions.

performance

6) Plan Selection

Plan selection is a critical phase of query
optimization, where the optimizer evaluates
multiple candidate execution plans and selects
the one expected to run most efficiently. Each
plan is assigned a cost estimate that considers
CPU usage, I/O operations, memory
consumption, and, in distributed systems,
network latency. The optimizer compares these
alternatives and chooses the plan with the lowest
predicted cost.

A foundational example of plan selection is
the System R optimizer for Select—Project—Join
(SPJ) queries [4]. Its search space consists of
operator trees that represent logically equivalent
join sequences, enabled by the associative and
commutative properties of joins. Scans may use
sequential or index access, while joins can be
executed using nested-loop or sort-merge
algorithms. The optimizer applies a cost model
that incorporates intermediate result sizes,
predicate selectivity, and operator costs,
enabling it to evaluate plans in a bottom-up
manner.

To manage the large search space, System R
introduced dynamic programming and
interesting orders. Dynamic programming
ensures only the best plans for subqueries are
retained when constructing larger plans,
reducing the search from factorial to polynomial
complexity. Interesting orders preserve
beneficial output properties (such as sorted
tuples), preventing premature pruning that
might eliminate globally optimal plans [4].
Modern optimizers generalize these ideas by
considering physical properties of plans, which
enables aggressive pruning without sacrificing
performance.

Beyond classical systems, contemporary
optimizers rely on heuristics and extended cost
models to further reduce complexity [9]. For
example, heuristics may restrict the number of
join permutations, prioritize selective indexes,
or treat short and long queries differently.

http://www.ijctjournal.org

https://ijctjournal.org/

PostgreSQL, for instance, uses histograms to
estimate predicate selectivity and chooses
between full table scans, index scans, or index-
only scans based on statistics and query
characteristics. It also applies rule-based
transformations, such as subquery elimination
or join reordering, to reduce intermediate result
sizes and improve overall efficiency.

In distributed SQL databases, adaptive
optimization extends plan selection by
incorporating runtime feedback [24] . Systems
such as CockroachDB and Google Spanner
monitor cardinality estimates, workload
distribution, and node performance during
execution. If runtime observations deviate from
optimizer predictions, plans may be
dynamically re-optimized or query fragments
redistributed across nodes to balance load.
These adaptive strategies help maintain
efficiency in the presence of skewed data
distributions, heterogeneous hardware, or
changing workloads.

In summary, effective plan selection balances
accurate cost estimation, heuristic pruning, and,
when possible, adaptive feedback. This balance
enables modern database systems to avoid
exhaustive plan enumeration while still
delivering efficient = query execution,
minimizing both resource consumption and
response time.

D. Query Optimization: Heuristics, Indexing, Joins,

and Plan Selection

Query optimization is a fundamental
component of modern relational database
management systems (RDBMS). Its goal is to
execute SQL queries efficiently while
minimizing resource usage. The optimization
process combines rule-based heuristics,
indexing strategies, join algorithms, and plan
evaluation techniques to select the most
efficient execution plan from multiple
alternatives.

1) Rule-Based Optimization

Rule-based optimization (RBO) applies
predefined heuristics to transform SQL queries

Page 263

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

into more efficient forms without relying on
detailed cost estimates. Common rules include
predicate pushdown, which moves selection
conditions closer to the data source, join
reordering to reduce intermediate result sizes,
and simplifying expressions where
applicable [4].

For example, consider a query joining Orders
and Customers with a selection condition on
Orders.OrderDate. RBO may apply the date
filter before performing the join, reducing the
number of tuples involved in the join operation.
Similarly, when multiple joins exist, heuristics
may prioritize smaller tables or more selective
predicates first to minimize intermediate result
sizes.

Advantages:

Simple to implement.

Predictable transformations based on fixed

rules.

Limitations:

e Ignores actual data distribution and index
availability.

May produce suboptimal plans for large or
skewed datasets [4].

1) Indexing Techniques

Indexes are essential for improving query
execution performance, especially for selection,
join, and aggregation operations. Common
indexing structures include:

e B-Tree Indexes: Efficient for both range
and point queries; maintain data in a
balanced tree structure.

¢ Hash Indexes: Optimized for exact-match
point queries; not suitable for range scans.

e Composite Indexes: Index multiple
columns together to accelerate multi-
attribute searches.

Indexes enable the optimizer to locate
relevant tuples quickly, reduce full table scans,
and facilitate joins. For example, filtering
Customers by City and State can use a
composite index on (City, State). Similarly,
indexed join columns reduce the cost of nested-
loop or merge joins [9].

ISSN :2394-2231

http://www.ijctjournal.org

https://ijctjournal.org/

Example Usage:
e Point query: SELECT * FROM Customers
WHERE CustomerID = 102; — Hash index.
e Range query: SELECT * FROM Orders
WHERE OrderDate BETWEEN °2024-01-01’
AND ’2024-01-31’; — B-Tree index.
e Join optimization: Using an index on
Orders.CustomerID when joining with
Customers.CustomerID.

2) Join Algorithms

Joins are typically the most resource-
intensive operations. The optimizer selects
among several join algorithms depending on
data sizes, indexing, and memory
availability:

e Nested-Loop Join (NLJ): Iterates over
each tuple of one table and searches for
matches in the other. Efficient for small
tables or when an index exists on the join
column.

e Merge Join (Sort-Merge Join): Requires
both inputs to be sorted on the join key;
merges tuples efficiently in a single pass.
Suitable for large, pre-sorted datasets.

e Hash Join: Builds a hash table for one input
and probes it with tuples from the other.
Highly efficient for equi-joins on large,
unsorted tables [4].

Cost Considerations:
e NLIJ: O(m x n) for tables of size m and n,
reduced to O(mlogn) with an index.
e Merge join: O(mlogm + nlogn) if inputs
are not pre-sorted.
e Hash join: O(m+n) with
memory.

sufficient

Example Scenario: A query joining a small
Departments table with a large Employees
table on DeptID may favor a nested-loop

join with index probing, whereas joining two
large unsorted tables may favor a hash join.

Page 264

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

3) Query Plan Evaluation and Selection

After generating candidate plans via rule-
based transformations and indexing heuristics,
the optimizer evaluates them to select the plan
with the lowest estimated cost. Key factors
include:

e Estimated I/O and CPU costs based on table
statistics and available indexes.

e Data distribution, including skewed data or
selective predicates.

e Interesting orders, where partially sorted
outputs can benefit subsequent operations
such as GROUP BY or ORDER BY [4].

Example: Consider two plans for joining
Orders and Customers:

e Plan A: Nested-loop join using a customer
index with selection pushed down;
estimated cost = 1500 units.

e Plan B: Hash join without
estimated cost = 3000 units.

The optimizer chooses Plan A, minimizing
I/O and CPU usage while leveraging indexes
and selective predicates. Advanced systems
may employ dynamic programming to
exhaustively explore join orders [10].

indexes;

E. Limitations of Traditional Optimization

Traditional query optimization methods,
including both rule-based and cost-based
approaches, depend heavily on the accuracy of
catalog statistics such as histograms, selectivity
factors, and cardinality estimates. When these
statistics become outdated or inaccurate, the
optimizer may generate suboptimal execution
plans, for instance, by choosing inefficient join
orders or inappropriate index usage. This issue
becomes particularly significant in dynamic or
high-throughput environments such as
streaming and OLTP systems, where data
updates occur frequently and statistics cannot be
refreshed continuously [4], [10] . Consequently,
even well-designed cost models can
misrepresent the actual data characteristics,
leading to degraded query performance.

As query complexity and dataset size increase,
the limitations of traditional optimizers become
even more evident. Queries involving multiple

http://www.ijctjournal.org

https://ijctjournal.org/

joins, nested subqueries, or correlated predicates
dramatically expand the search space of
possible execution plans, often growing
exponentially. To manage this, optimizers
employ heuristics or pruning strategies that
reduce computation time but risk overlooking
globally optimal plans. Moreover, in distributed
or partitioned database environments,
traditional cost models fail to accurately capture
network latency, data skew, and parallelism
overheads, which are critical to determining true
query cost [9], [24]. These challenges
collectively limit the scalability and reliability
of conventional optimization techniques.

Another major constraint lies in the static
nature of traditional optimization, which
assumes stable workloads and data distributions.
In practice, workloads evolve, and data
characteristics shift over time, causing static
query plans to perform poorly under new
conditions. Although adaptive query
optimization techniques attempt to address this
by adjusting plans during execution, they still
depend on the same cost models and
precomputed statistics that underlie
conventional optimizers [1], [24]. To overcome
these challenges, researchers have increasingly
explored Al-assisted optimization, leveraging
machine learning and deep learning to learn cost
patterns directly from observed query
workloads. These Al-based approaches can
adapt dynamically to data and workload
changes, learn from execution feedback, and
generalize better to wunseen queries than
traditional rule or cost-based systems [17], [22],
[14].

II1. AI TECHNIQUES IN
QUERY OPTIMIZATION

A. Overview and Motivation

Traditional query optimization techniques,
including both rule-based and cost-based
approaches, face increasing limitations in
modern database environments. Their
dependence on predefined heuristics and
manually designed cost models restricts

Page 265

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

adaptability, especially when data distributions
shift or when queries contain complex
interdependencies among predicates and
attributes. Furthermore, the effectiveness of
these optimizers depends heavily on the
accuracy of statistical metadata such as
histograms and selectivity estimates, which
often become outdated or incomplete in
dynamic systems [24] Consequently,
traditional optimizers may misestimate
cardinalities, select inefficient join orders, or
fail to utilize indexes effectively, resulting in
significant performance degradation.

To address these challenges, a new paradigm
of Al-driven query optimization has emerged.
This approach incorporates learning-based
models into the core of the optimization process.
Instead of relying solely on handcrafted
formulas, Al-based systems learn directly from
historical query workloads, execution feedback,
and runtime statistics to build predictive models
that generalize across different contexts [17],
[22]. These models can estimate query
selectivity, execution cost, or even the optimal
join order based on data-driven features,
allowing the optimizer to adapt continuously as
data and workloads evolve. Deep learning
techniques have shown strong potential in
capturing complex relationships between
attributes and predicates that traditional models
are unable to represent effectively [22].

Al-assisted optimization can enhance or
replace specific stages of the optimization
pipeline. Supervised learning methods are
applied to predict cardinalities and query costs
from past executions. Reinforcement learning
approaches enable optimizers to improve
planning strategies through iterative trial and
feedback. Evolutionary and genetic algorithms
perform population-based searches to
efficiently explore large plan spaces and
identify high-quality solutions [24], [22].
Collectively, these approaches represent a shift
toward self-learning and self-adaptive query
optimizers that surpass traditional, statistics-
dependent systems in handling complex or
rapidly changing database environments [17].

http://www.ijctjournal.org

https://ijctjournal.org/

B. Machine Learning-Based Optimization

1) Cost and Selectivity Estimation via ML

Machine learning has increasingly been
applied to query optimization, particularly for
cardinality and cost estimation, which are
crucial for selecting efficient execution plans.
Traditional empirical estimators often fail to
capture correlations between multiple columns,
leading to inaccurate predictions. Early ML-
based approaches, such as MSCNN, used
convolutional neural networks to model multi-
set representations of query joins, achieving
improved cardinality estimation compared with
histogram-based methods. However, MSCNN
is limited to predicting cardinality and does not
directly estimate query costs.

The End-to-End framework extends this
concept by employing a tree-structured model
capable of predicting both cost and cardinality
simultaneously. It leverages advanced feature
extraction from queries and physical operations,
including numeric and string attributes.
Embedding techniques, such as hash-bitmap or
rule-based embeddings, are used to handle
sparse string values, improving generalization
to previously unseen queries. Multitask learning
further enhances the model’s ability to manage
complex predicates and multi-join queries [22].

In contrast, Neo addresses query optimization

from a plan-centric perspective. It utilizes a

deep neural network called a value network to

approximate the best achievable latency for
partial execution plans. Neo incorporates tree
convolution layers to process execution plan
trees, capturing parent-child relationships and
identifying patterns indicative of high- or low-
quality plans. The predicted costs guide a best-
first search to construct complete query plans,
effectively combining supervised learning with
search-based plan selection [14].

Experimental results demonstrate the benefits
of these ML-based techniques. MSCNN
improves cardinality estimation compared with
traditional methods, End-to-End significantly
reduces both cost and cardinality errors across
numeric and string-heavy workloads, and Neo

Page 266

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

generates query plans that are often faster than
those produced by commercial and open-source
optimizers, while generalizing well to new
queries and datasets. Together, these works
illustrate a clear progression from single-task
cardinality estimation to fully integrated, cost-
aware, plan-guided machine learning for query
optimization.
C. Reinforcement Learning (RL) for Query
Optimization

Reinforcement Learning (RL) provides a
dynamic framework for viewing query
optimization as a sequential decision-making
process rather than a static cost estimation task.
Traditional optimizers depend on fixed
heuristics and manually designed cost models,
which often perform poorly when workloads or
data distributions change. In contrast, RL
models the optimizer as an agent that interacts
with the database environment, learns from
experience, and continuously improves its
policy to minimize query execution cost.

1) Core Idea

The foundation of RL-based optimization
derives from Bellman’s Principle of Optimality,
which underlies dynamic programming and
Markov Decision Processes (MDPs) [11]. In
this context, query optimization can be
formulated as an MDP defined by the tuple
(S, 4, P(s,a),R(s, a), so), where:

e Srepresents the set of query states, such as
partially constructed execution plans.

e A represents the available actions, including
choosing the next join or physical operator.

e P(s,a) defines the transition to a new state
after taking an action.

e R(s,a) defines the reward, typically the
negative of the estimated plan cost.

The objective is to learn a policy that maps
states to actions to maximize the expected
cumulative reward. In practical terms, this
corresponds to minimizing total query execution
cost. The RL agent must balance short-term
actions, such as choosing an immediate join,

http://www.ijctjournal.org

https://ijctjournal.org/

with their effects on overall

performance.

long-term

1) RL Applications

RL has been explored across multiple aspects
of query optimization:
e Join Order Optimization

Traditional dynamic programming explores
all possible join orders, which grows factorially
with the number of relations. RL reformulates
this as learning a Q-function over query graphs,
where each join represents an action that
transitions the state to a new partial plan [11].
Unlike greedy heuristics that focus only on
immediate costs, RL methods capture long-term
dependencies and identify globally better join
orders through experience.
e Plan Selection and Re-optimization

Adaptive database systems such as
CockroachDB and Google Spanner employ
feedback-based re-optimization when actual
performance diverges from estimated costs [24] .
This feedback loop reflects an RL-like learning
process in which the system refines its internal
model of selectivity and cost through repeated
interactions.
e Index Tuning and Caching Decisions

RL agents can also manage physical design
tasks such as index and cache selection.
Treating database configurations as states and
tuning operations as actions allows the agent to
autonomously learn efficient configurations that
minimize resource usage and query latency.

2) Algorithms and Architectures

Various RL algorithms have been adopted for
query optimization. Early studies applied Q-
learning and Policy Gradient methods, while
recent research employs Deep Q-Networks
(DQN) and Actor-Critic architectures capable of
handling large and continuous state spaces.

A notable example, [14], introduces a plan-
structured neural network that mirrors the
hierarchical organization of query plans. Each
relational operator corresponds to a neural unit,
and these units form a tree that encodes the
operator dependencies within the plan.

Page 267

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

Information flows upward from child operators
to parents, and shared weights across identical
operator types enable generalization across
different queries. This design allows the model
to learn how individual operator behaviors
influence overall latency, which aligns well with
RL training where plan performance serves as
the reward signal.

Integrating such architectures with RL
enables end-to-end learning, where the agent
observes the query structure, predicts
performance outcomes, and refines its policy
based on observed rewards. However,
challenges remain due to delayed feedback,
high-dimensional state spaces, and expensive
environment interactions. Hybrid approaches,
which combine analytical cost models with
learned RL policies, offer a practical balance
between stability and adaptability, ensuring
robust optimization under diverse workloads.

D. Evolutionary and Genetic Algorithms
1) Principle

Evolutionary and genetic algorithms model
query optimization as a population-based search
problem, where each individual represents a
complete query execution plan, including join
ordering, operator selection, and access paths.
This perspective emerged from early research
recognizing that exhaustive enumeration of
query plans becomes infeasible as query
complexity increases, particularly for multi-join
queries and large optimization search
spaces [10].

In this approach, the optimizer maintains a
population of candidate plans and iteratively
improves them wusing genetic operators.
Selection favors plans with lower estimated
execution cost according to a fitness function.
Crossover combines subplans or join subtrees
from high-quality individuals to generate new
candidate plans, while mutation introduces
random structural changes to preserve
population diversity and avoid premature
convergence. By operating on a population
rather than a single plan, genetic algorithms can

http://www.ijctjournal.org

https://ijctjournal.org/

explore a wider portion of the plan space and are
less constrained by local optimality assumptions.
Unlike traditional cost-based optimizers that
rely heavily on heuristic pruning and
deterministic rules, evolutionary algorithms
enable exploration of large, non-linear, and
discontinuous optimization landscapes. This
makes them particularly suitable for complex
queries, multi-objective optimization scenarios,
and environments where cost models are noisy
or incomplete. Empirical studies have shown
that population-based optimization can identify
high-quality execution plans even under
inaccurate cost estimates. However, this benefit
comes at the cost of higher optimization
overhead and longer convergence times
compared to classical optimizers [1].

2) Advantages

Evolutionary and genetic algorithms are
particularly effective in large, non-linear, and
highly complex optimization spaces where
traditional query optimization techniques
struggle. Query optimization inherently suffers
from combinatorial explosion due to the vast
number of possible join orders, operator choices,
and access paths. By maintaining a population
of candidate execution plans, genetic algorithms
can explore diverse regions of the plan space
without requiring exhaustive enumeration. This
makes them well suited for complex analytical
queries and multi-objective optimization
scenarios, such as jointly optimizing execution
time, resource utilization, and robustness under
uncertainty [10].

Another significant advantage is their ability
to escape local minima more effectively than
greedy heuristics or classical cost-based
optimizers. Traditional optimizers often make
early commitments to locally optimal decisions
based on imperfect or incomplete cost estimates,
which can result in globally suboptimal
execution plans. In contrast, genetic operators
such as mutation and crossover introduce
controlled randomness and structural
recombination, enabling the search process to
move beyond locally optimal regions and

Page 268

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

discover higher-quality plans. Empirical studies
have shown that this capability is especially
valuable when cost models are inaccurate or
data distributions are skewed, as evolutionary
approaches are less sensitive to individual
estimation errors and can still converge toward
efficient solutions [1].

3) Limitations

Despite their advantages, evolutionary and
genetic algorithms have notable limitations.
One major drawback is their high computational
cost and extended convergence time. These
methods maintain and evolve a population of
query plans over multiple generations, and each
plan must be evaluated using either the cost
model or actual execution metrics. For large
queries or complex workloads, this evaluation
can become computationally expensive and
time-consuming [10].

Another limitation is their dependence on the
accuracy of the fitness function, which estimates
the quality or cost of a query plan. If the fitness
function does not accurately reflect actual
execution performance, the algorithm may
converge to suboptimal plans, since selection,
crossover, and mutation operators rely on these
evaluations to guide the search [1].

These challenges underscore =~ why
evolutionary approaches are often combined
with heuristics or machine learning techniques.
Such hybrid strategies can reduce evaluation
overhead, improve fitness estimation, and
enhance convergence toward high-quality query
execution plans.

E. Comparative Evaluation and Future Directions

1) Strengths and Weaknesses

When evaluating Al-driven query
optimization strategies, several key
observations emerge. Machine learning (ML)
models, such as plan-structured neural networks,
excel at capturing complex operator-level
interactions and can generalize across queries
within the same workload, providing high
accuracy in latency prediction [14], [17].
Reinforcement learning (RL) approaches offer a

http://www.ijctjournal.org

https://ijctjournal.org/

principled framework for sequential decision-
making in tasks such as join ordering and
operator selection. By considering long-term
rewards and adapting dynamically to execution
feedback, RL methods can improve plan quality
over time [11], [24]. Evolutionary and genetic
algorithms are particularly effective at exploring
large, non-linear, and multi-objective search
spaces, with the ability to escape local minima
more reliably than greedy or traditional cost-
based approaches [1], [10].

Hybrid systems that integrate Al techniques
with classical cost-based optimizers
demonstrate promising results. These systems
leverage the predictive power of ML models or
the adaptive learning of RL agents while
retaining the reliability, explainability, and
safety mechanisms inherent to traditional
database management systems [22]. Such
combinations often achieve a balance between
performance gains and operational robustness.

2) Practical Considerations

Despite their potential, Al-driven optimizers
face several practical challenges. Training
overhead can be substantial, particularly for
deep neural networks or RL agents that require
extensive query execution experience. Ensuring
generalization to unseen queries is essential to
prevent overfitting to the training workload.
Explainability remains a concern, as ML and RL
models often produce query plans without
intuitive human-readable reasoning, which can
complicate debugging, tuning, and adoption in
production environments [24] .

Integrating Al-driven optimizers into existing
DBMS platforms, such as PostgreSQL or
Microsoft SQL Server, also demands careful
planning. Techniques like experience
bootstrapping from traditional cost-based
optimizers, query hints, or hybrid evaluation
pipelines can facilitate gradual integration while
maintaining consistent query performance [22].
These strategies allow Al-based systems to
enhance optimization incrementally without
disrupting established database operations.

Page 269

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

3) Future Research Directions

Future research in Al-driven query
optimization is focused on improving
adaptability, generalization, and interpretability.
Meta-learning approaches may enable models to
quickly adapt to new workloads with minimal
retraining, while continual learning techniques
can maintain performance as database schemas

and query patterns evolve. Federated
optimization provides opportunities for
collaborative ~ learning across multiple
organizations without compromising data
privacy.

Cross-system transfer learning is another
promising avenue, allowing a single model to
operate across different DBMSs, reducing
training overhead and improving generalization.
Additionally, research on explainable Al for
query optimization is expected to grow, aiming
to produce interpretable predictions that
database administrators can understand, trust,
and act upon [17], [22], [24].

IV. COMPARATIVE ANALYSIS

A. Optimization Paradigm
Traditional query optimizers primarily rely on
cost-based and heuristic-driven techniques.
These systems estimate the cost of alternative
execution plans using statistical summaries,
including table cardinalities, histograms, and
join selectivities, and then apply rule-based or
dynamic programming strategies to select the
plan with the lowest estimated cost [10], [1],
[24]. While effective for many workloads, these
methods often struggle when underlying
assumptions—such as uniformity or
independence of data—are violated, particularly
in queries involving multiple correlated
columns or complex predicates. Additionally,
maintaining accurate cost models typically
requires careful tuning by database
administrators, which can be challenging in
dynamic or distributed environments [24], [22].
In contrast, Al-assisted query optimization
adopts a data-driven, learning-based paradigm.
These systems employ machine learning models,

http://www.ijctjournal.org

https://ijctjournal.org/

including neural networks and reinforcement
learning agents, to learn representations of
queries, execution plans, and associated costs
directly from historical execution data [14], [10],
[22]. For instance, Neo uses row vector
embeddings to encode correlations between
columns and tables, enabling it to predict
cardinalities and select optimal join orders even
for previously unseen predicates [14]. End-to-
end deep learning frameworks further extend
this capability by jointly modeling cost and

cardinality using tree-structured neural
networks, capturing the structure of subplans
and complex predicates in a unified

representation [22], [14].

By leveraging semantic relationships within
both the data and plan structures, Al-assisted
optimizers can generalize to new queries, adapt

to evolving workloads, and achieve
performance improvements beyond the reach of
traditional ~ cost-based = methods. These

advantages, however, require sufficient training
data, significant computational resources, and
carefully designed features or embeddings to
ensure robust model performance [15], [22].

B. Decision Making and Search Space Exploration

Traditional query optimizers explore the
space of possible execution plans using dynamic
programming, exhaustive or pruned search, and
greedy heuristics [10], [1], [24]. For instance, in
join order selection, classical methods
enumerate candidate subplans, estimate their
costs, and retain only the most promising
options based on intermediate calculations.
Greedy heuristics simplify this process further
by selecting the locally optimal choice at each
step, such as joining the tables with the smallest
estimated cardinalities first. While these
techniques provide strong theoretical guarantees,
they are limited by the combinatorial explosion
of potential plans as the number of tables and
join conditions grows. They also struggle to
account for correlations across multiple
attributes or tables, which can lead to
suboptimal decisions for complex queries [22],
[14].

Page 270

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

Al-assisted optimizers, by contrast, adopt
data-driven and adaptive strategies to navigate
the plan space more efficiently [14], [22], [10].
Neural network—based models transform query
plans into fixed-size embeddings, enabling
rapid cost prediction and effective pruning of
unlikely candidates. Reinforcement learning
approaches frame query optimization as a
Markov Decision Process (MDP), where an
agent sequentially selects joins, indexes, or
subplans to maximize a cumulative reward,
typically defined as minimizing overall
execution time [11]. Evolutionary and genetic
algorithms represent candidate plans as
populations, applying selection, crossover, and
mutation iteratively to explore the search space
and discover high-quality plans [1].

Compared with traditional methods, Al-
driven approaches can generalize across diverse
queries, capture intricate correlations, and often
identify efficient plans more quickly in large or
non-linear search spaces. However, these
benefits come at the cost of requiring sufficient
training data, careful feature or embedding
design, and potentially significant
computational resources to train or simulate
models before deployment [15], [22].

C. Adaptability and Learning

Traditional query optimizers are largely static,
relying on pre-defined cost models, heuristics,
and historical statistics [10], [1], [24]. Some

systems include limited adaptive features, such
as runtime re-optimization or feedback loops
(e.g., Eddies or adaptive operators in distributed
databases), but their capacity to improve over
time is constrained by the assumptions encoded
in the optimizer and the accuracy of the
underlying statistics [24] . For instance, when
column distributions deviate from uniformity or
independence assumptions, the optimizer may
consistently choose suboptimal plans [22], [14].
Al-assisted optimization, in contrast,
introduces self-improving capabilities through
learning-based approaches. Neural network
models can learn from past query executions to
predict costs and select efficient plans even for

http://www.ijctjournal.org

https://ijctjournal.org/

unseen queries. Reinforcement learning—based
optimizers refine their decision policies
continuously using execution feedback,
allowing them to generalize across workloads
and evolving query patterns. Furthermore, Al-
driven approaches can incorporate online
learning, transfer learning, and meta-learning,
enabling models to adapt to changing data
distributions, schema modifications, or entirely
new databases while maintaining high
performance [15], [22].

This adaptability enables Al-assisted
optimizers to capture correlations across
attributes, handle complex query structures, and
improve over time—capabilities that are
difficult or impossible for traditional cost-based
systems. However, these benefits come with
trade-offs, including the need for training
overhead, ongoing model maintenance, and
careful monitoring, making careful integration
into production environments essential ([22],
[14].

D. Computational Overhead

Traditional query optimizers typically have
low computational overhead. Their cost
estimation and plan selection processes are
deterministic, relying on analytical formulas,
heuristics, and dynamic programming to
efficiently explore feasible plans [10], [1], [24].
Because these systems do not require model
training, their runtime cost is minimal, making
them suitable for real-time query planning even
on large datasets.

Al-assisted optimizers, however, introduce
additional computational costs associated with
training and inference. Models must first be
trained on historical query workloads to learn
cost, cardinality, or plan representations. This
training can be resource-intensive and time-
consuming, particularly for deep neural
networks or reinforcement learning frameworks
that explore large search spaces [15], [22]. Once
trained, though, inference is generally fast and
can be amortized across multiple queries. For
example, Neo’s row vector embeddings and
tree-structured models allow quick prediction of

Page 271

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

https://ijctjournal.org/

execution costs for new queries, enabling the A. Evaluation Objectives

system to select better plans without modifying
the DBMS at runtime [14], [15].

In summary, while Al-assisted optimizers
require an upfront computational investment,
the resulting performance gains and adaptability
can outweigh these costs in high-throughput or
repetitive query environments. Nonetheless,
careful attention to training frequency, model
size, and inference latency is essential to ensure
practical integration into production database
systems (Sun and Li 2019; Rigden, n.d.).

E. Explainability and Debugging

Traditional query optimizers are highly
interpretable. Their decisions are based on
explicit cost models, heuristics, and rules, which
allows database administrators (DBAs) to trace
the reasoning behind plan choices, understand
bottlenecks, and debug performance issues [10],
[1], [24]. The transparency of these methods
makes it straightforward to predict how changes
in table statistics or query structures affect
execution plans.

Al-assisted optimizers, on the other hand,
often have lower interpretability. Deep learning
models generate plans based on learned
embeddings, neural network predictions, or
reinforcement learning policies, which can be
difficult to explain in human-understandable
terms [14], [22], [15]. For instance, Neo’s row
vector embeddings capture complex
correlations between attributes, but
understanding why a specific join or scan order
was selected may not be immediately evident.

To mitigate this, hybrid approaches are
emerging that combine Al-driven predictions
with cost-based reasoning or feature importance
analysis. These methods provide some level of
transparency while still benefiting from the
predictive power of Al models [22], [24]. In
practice, the trade-off between explainability
and performance is a key consideration when
deploying Al-assisted optimizers in production
environments.

V. EXPERIMENTAL EVALUATION

http://www.ijctjournal.org

The experimental evaluation in this chapter
aims to examine how effectively Al-assisted
query optimization techniques address the key
weaknesses of traditional rule-based and cost-
based optimizers discussed in previous sections.
Rather than introducing new experimental
setups, this section synthesizes and analyzes
results reported in prior studies to identify where
learning-based approaches provide measurable
improvements and where their limitations
persist.

A primary evaluation objective is cost
estimation accuracy, since inaccurate cost
models are a central cause of suboptimal plan
selection in traditional optimizers. Classical
approaches rely on handcrafted formulas and
static assumptions that often fail to reflect actual
execution behavior, particularly in the presence
of correlated predicates or complex execution
plans. Al-assisted techniques attempt to learn
cost functions directly from execution feedback,
making cost prediction accuracy a critical
metric for assessing their effectiveness [15],
[22].

Closely related is cardinality estimation
error, which strongly influences join ordering
and operator selection. Traditional histogram-
based estimators struggle with multi-column
correlations and skewed data distributions,
frequently leading to significant
underestimation or overestimation. Prior studies
evaluate Al-based estimators by comparing
predicted cardinalities with true result sizes,
assessing whether learned models can better
capture correlations and reduce estimation
errors in complex queries [15], [22].

Beyond estimation accuracy, query
execution time serves as the most practical end-
to-end performance metric. Even when
estimation quality improves, the ultimate
objective of query optimization is to reduce
execution latency and overall resource
consumption. Experimental evaluations
therefore compare the execution times of plans
generated by Al-assisted optimizers with those
produced by native database optimizers under

Page 272

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

identical workloads. Reported speedups or
slowdowns provide concrete evidence of
whether learned optimization decisions translate
into tangible system-level performance
gains [14], [24].

Another important objective is evaluating
plan quality relative to native optimizers,
including mature commercial and open-source
systems. Traditional optimizers benefit from
decades of engineering effort and domain
expertise, making direct comparison essential
for establishing the credibility of Al-assisted
approaches. Experimental studies often
examine whether learning-based optimizers can
match or outperform native systems across
diverse workloads, query templates, and data
distributions, particularly in scenarios involving
complex joins or highly correlated
attributes [14], [10].

Taken together, these evaluation objectives
directly reflect the limitations of traditional
optimization identified earlier, including
dependence on accurate statistics, weak
handling of complex queries, and limited
adaptability to dynamic workloads. By jointly
examining cost accuracy, cardinality error,
execution performance, and plan quality, the
experimental analysis provides a
comprehensive assessment of whether Al-
assisted optimization constitutes a robust and
meaningful alternative to conventional
techniques [1], [24].

B. Experimental Results and Key Findings

Experimental studies from prior work
demonstrate clear performance differences
between Al-assisted and traditional query

optimization approaches, highlighting
improvements in execution efficiency,
adaptability, and robustness. This section

summarizes key findings from Neo [14], end-to-
end learning frameworks [22], and adaptive
query optimization systems [24] .

1) Overall Performance

Neo consistently outperforms native
optimizers across multiple DBMS platforms.

http://www.ijctjournal.org

https://ijctjournal.org/

On the JOB workload, Neo achieved query
execution times approximately 40% faster than
PostgreSQL’s native optimizer after 100
training iterations [14]. When evaluated on
commercial systems such as MS SQL Server
and Oracle, Neo generated plans up to 10%
faster than the native optimizers, despite being
bootstrapped solely with PostgreSQL plans [14].
For TPC-H workloads, performance gains were
slightly lower, likely because commercial
systems are heavily tuned for this
benchmark [14]. These results indicate that Al-
assisted optimizers can surpass both open-
source and commercial systems, particularly for
queries with complex joins or highly correlated
predicates [14].

2) Training Time and Convergence

Neo’s learning curves indicate rapid initial
improvements, with significant performance
gains observed after only nine training iterations
on PostgreSQL [14]. Full convergence to
performance comparable with commercial
systems requires additional iterations, reflecting
the more sophisticated planning algorithms used
in those optimizers [14]. Wall-clock analysis
shows that Neo reaches parity with PostgreSQL
within approximately two hours and approaches
the performance of all tested optimizers within
half a day [14]. Using initial demonstration data
from PostgreSQL was crucial to reduce training
time and avoid poor performance from
randomly sampled plans, which can cause
order-of-magnitude execution delays [14].

3) Predicate Representation and Cardinality Estimation

End-to-end learning methods highlight the
importance of effective feature representation
for optimizer performance [22]. Models
incorporating string embeddings combined with
rule-based pretraining consistently outperform
simpler encodings, especially on complex
multi-join queries [22]. Tree-pooling structures
further improve semantic representation of
compound predicates [22]. These Al-assisted
techniques reduce both cardinality and cost
estimation errors compared to traditional

Page 273

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

estimators, yielding more concentrated and
predictable error distributions [22].

4) Adaptability and Robustness

Experiments using Ext-JOB queries
demonstrate Neo’s ability to generalize to
previously unseen query structures [14]. While
initial performance on novel queries may be
lower, the optimizer quickly adapts within a few
training episodes, illustrating the benefits of
self-improving learning-based systems [14].
Similarly, adaptive query optimizers in
distributed systems such as CockroachDB and
Google Spanner exhibit resilience under varying
workloads and failure conditions [24]
Adaptive mechanisms achieve up to a 42%
reduction in query latency and a 30%
improvement in throughput under dynamic
conditions, while significantly reducing failed
transactions and improving recovery times [24] .

5) Sensitivity to Feature Quality and Search Time

Neo demonstrates selective reliance on input
features [14]. For example, when cardinality
estimates are unreliable, such as in queries with
more than three joins, Neo prioritizes patterns
learned from prior executions rather than
inaccurate estimates [14]. Analysis of search
time indicates that queries with more joins
require longer optimization, but modest cutoffs
(approximately 250 milliseconds) are sufficient
for most scenarios [14].

6) Per-Query Optimization Flexibility

Al-assisted optimizers like Neo support
customizable optimization objectives, such as
prioritizing total workload execution time
versus per-query improvement [14].
Experiments show that this flexibility can
reduce overall workload time while avoiding
regressions for individual queries, providing an
advantage over traditional deterministic
optimizers [14].

7) Summary of Key Findings

e Al-assisted optimizers (Neo [14], End-to-
End [22]) consistently outperform

http://www.ijctjournal.org

https://ijctjournal.org/

traditional and commercial optimizers on
complex queries.

e Effective feature representation, such as row
vector embeddings [14] and string
embeddings with tree-pooling [22], is
critical for accuracy and generalization.

e Adaptive and learning-based approaches
handle dynamic workloads and unseen

queries more effectively than static
optimizers [14], [24].

e Training and search overheads are
manageable, with convergence to

competitive performance achievable within
reasonable time frames [14].

e These methods enable optimization goals to
be tailored at the workload or per-query
level [14].

Overall, experimental evidence confirms that

Al-assisted and adaptive optimization
techniques offer measurable improvements in
performance, adaptability, and robustness,

supporting the observations made in Sections 5
and 6.1 [14], [22], [24].

C. Cost and Cardinality Estimation Accuracy

Accurate cost and cardinality estimation is
fundamental for effective query optimization.
Traditional histogram-based estimators rely on

precomputed statistics and independence
assumptions, which often fail to capture
correlations across columns or tables,

particularly in complex queries [14]. These
inaccuracies can lead to suboptimal join
ordering, poor operator selection, and increased
query execution time.

1) ML-Based Estimators

Modern machine learning—based approaches,
including MSCN, End-to-End learning models,
and Neo, leverage learned representations of
query structure and data distributions to
improve estimation accuracy [22], [14], [15].
By capturing inter-column correlations,
complex predicate interactions, and join
patterns, these models overcome limitations
inherent to traditional histogram-based methods.

Page 274

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

2) Evaluation Metrics

The performance of cost and cardinality
estimators is typically assessed using the
following metrics:

e Mean Error — the average deviation from
the true cardinality or cost.

e q-error — the ratio of estimated to actual
values, which emphasizes large
discrepancies.

e Max Error — the worst-case deviation
across all evaluated queries.

3) Key Findings from Literature

e Neo [14] demonstrates substantially lower
mean and max errors than histogram-based

estimators, particularly = for queries
involving multiple joins.
e End-to-End models [22] outperform

traditional estimators at high-percentile g-
errors (90-99th percentile), showing their
ability to reduce extreme estimation errors.

e MSCN and Neo [15], [14] achieve more
concentrated error distributions, indicating
robust predictions even for unseen or
complex queries.

e Overall, ML-based estimators can reduce
cardinality and cost estimation errors by up

to 2-3 X compared to traditional
methods [22], [14].

4) Conclusion
Machine learning—based estimators

significantly enhance the reliability of query
optimization by capturing complex data patterns
that traditional approaches cannot. These
improvements directly translate into more
accurate execution plan selection, reduced
query latency, and more predictable
performance [22], [14], [15].

D. Query Execution Performance

Query execution performance reflects the
ultimate goal of query optimization: generating
plans that execute efficiently on the target
database system. Prior work has compared
actual runtimes of query plans produced by
native and Al-assisted optimizers [14], [24].

http://www.ijctjournal.org

https://ijctjournal.org/

1) Native Optimizers

Traditional systems, such as PostgreSQL,
Oracle, and MS SQL Server, rely on static cost
models and heuristic-driven plan selection.
While generally robust, these systems can
exhibit suboptimal execution under complex
queries, skewed data distributions, or dynamic
workloads [24] .

2) Al-Assisted Optimizers

Learning-based approaches, including Neo,
leverage neural networks trained on prior query
executions to generate efficient execution plans.
e Benchmark Performance: On the JOB

workload, Neo reduced median execution
time by up to 40% compared with
PostgreSQL and, in some cases, matched or
exceeded commercial optimizer
performance on MS SQL Server and
Oracle [14].

e Robustness to Unseen Queries: Neo
maintained strong relative performance on
extended workloads, demonstrating
effective generalization to previously
unseen query structures [14].

3) Performance Insights

e Al-assisted optimizers achieve substantial
median speedups and reduce worst-case
query runtimes.

e Adaptive query mechanisms in distributed
systems, such as CockroachDB and Google
Spanner, improve performance under
dynamic workloads, achieving up to 42%
lower latency and 30% higher throughput
compared to static plans [24] .

e The combination of learned cost models and

adaptive execution allows Al-based
optimizers to compete with mature
commercial systems without requiring

modifications to the underlying database
engine [14].

4) Summary

Al-assisted optimizers consistently provide
runtime improvements, reduce latency spikes,
and adapt to changing workloads,

Page 275

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

demonstrating a tangible advantage over
traditional static optimization approaches [14],
[24].

E. Generalization and Robustness

Generalization and robustness are critical for
Al-assisted query optimizers, as real-world
workloads often include unseen queries, novel
predicates, and shifting data correlations [15],
[22].

1) Handling Unseen Queries

Neo has demonstrated the ability to generalize
to entirely new queries not present during
training. By leveraging row-level embeddings
(R-Vectors), Neo can select efficient execution
plans for Ext-JOB queries, often outperforming
or matching native optimizers with minimal
additional training [14].

End-to-End deep learning models similarly
exhibit strong generalization to queries with
complex compound predicates, accurately
predicting cardinalities and costs for multi-join
queries outside their training workload [22].

2) Adapting to Data Shifts

Al-assisted optimizers can adjust to
correlations across tables and columns that
traditional histogram-based estimators often
miss. For instance:

e Neo selectively trusts cardinality estimates
depending on query complexity, ignoring
unreliable inputs when needed [14].

e End-to-End models capture semantic
patterns in numeric and string predicates,
enhancing robustness to changes in
workload distributions [22].

3) Key Takeaways

e Al-based optimizers maintain high plan
quality across diverse and evolving
workloads.

e Techniques such as feature embeddings and
end-to-end learning enable generalization
beyond training data, offering a significant
advantage over static, traditional optimizers.

F. Training and Overhead Analysis

http://www.ijctjournal.org

https://ijctjournal.org/

Al-assisted query optimizers incur additional
computational overhead due to model training
and inference, but these costs are often offset by
improved query execution performance over
repeated workloads [14], [15].

1) Training Time

Models such as Neo require multiple training
iterations to reach competitive performance. For
example:

e Neo reached parity with PostgreSQL in as
few as 9 training episodes for simpler
workloads.

e Achieving performance comparable to
commercial optimizers like MS SQL Server
or Oracle required additional iterations [14].

e Wall-clock training time depends on dataset
size and DBMS, but typically less than half
a day 1is sufficient to reach robust
performance on common workloads [14].

2) Inference Time and Runtime Overhead

Once trained, inference time is minimal
relative to overall query runtime. Al-assisted
optimizers can generate execution plans
efficiently, =~ making runtime overhead
practically negligible for repeated or high-
throughput queries [14], [15].

The initial training cost is effectively
amortized in scenarios where queries are
repeated or workloads are substantial, providing
consistent performance improvements over
traditional static optimizers.

3) Practical Feasibility in DBMSs

Modern relational and distributed systems can
integrate Al-assisted optimizers without
disrupting standard operations, as training can
be performed offline and inference applied at
query planning time [14].

Hybrid approaches that combine Al
predictions with traditional cost models further
balance performance, reliability, and

interpretability, enabling practical deployment
in production DBMSs [14].

Page 276

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

4) Key Takeaways

e Training introduces an initial overhead but
provides long-term performance benefits,
particularly for complex or repeated
workloads.

e When properly amortized, Al-assisted
optimization improves query performance
without imposing significant operational
costs.

G. Adaptive and Online Optimization Results

Adaptive and online query optimization
techniques leverage runtime feedback and
dynamic plan adjustments to maintain efficient
query execution under changing workloads [24],

[4].

1) Runtime Feedback and Re-Optimization

Systems such as CockroachDB and Google
Spanner collect real-time statistics during query
execution and adjust plans when observed row
counts or operator costs deviate from
estimates [24] .

e Re-optimization can occur at operator-level
granularity, enabling the system to correct
suboptimal plans mid-execution without
restarting queries.

2) Performance Stability under Workload Shifts

Adaptive strategies reduce latency spikes
caused by data skew, fluctuating query rates, or
node throttling.

e Experiments report up to 42% reduction in
query latency under fluctuating read-heavy
workloads, and 30% throughput
improvement for mixed OLTP/OLAP
scenarios [24] .

¢ During node failures or unexpected system
load, adaptive optimizers reduce retry and
failure rates by 60-80%, maintaining
consistent performance [24] .

3) Distributed Systems Perspective

Adaptive optimization is particularly valuable
in distributed and partitioned environments,
where static cost models fail to account for

http://www.ijctjournal.org

https://ijctjournal.org/

network latency, resource contention, or skewed
data distributions [11].

Techniques such as plan fragment
redistribution, dynamic load balancing, and cost
recalibration enable distributed DBMSs to
remain resilient and maintain query
performance across heterogeneous nodes [24] .

4) Key Takeaways

e Adaptive and online optimizers enhance
robustness and stability in dynamic
workloads.

e They complement Al-assisted optimization
by continuously refining plan quality based
on real-time execution metrics, particularly
in distributed or high-throughput systems.

H. Summary of Findings

The experimental evidence from prior
studies [14], [22], [15] highlights the
comparative strengths and limitations of Al-
assisted and traditional query optimization
approaches.

1) Advantages of Al-Assisted Optimization

e Cost and cardinality estimation: Machine
learning models such as MSCN, End-to-End,
and Neo significantly reduce estimation
errors compared to histogram-based
methods, particularly for complex queries
with correlated columns or multiple
joins [22], [14], [15].

e Query execution performance: Neo
consistently outperforms PostgreSQL and
achieves performance comparable to
commercial optimizers, with median
execution times often improved by 30—
40% [14].

e Generalization and robustness: Al-
assisted optimizers handle unseen queries
and novel predicates effectively.
Techniques such as row embeddings in Neo
and End-to-End models enable rapid
adaptation to previously unseen
workloads [15], [22].

e Adaptive and online optimization:
Systems that incorporate runtime feedback,

Page 277

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

such as CockroachDB and Google Spanner,
maintain stable performance under dynamic
workloads, reducing latency spikes and
improving throughput [24], [4].
2) Scenarios Where Traditional Optimization Remains
Competitive

e Forsimple or static workloads, rule-based or

cost-based optimizers often provide
sufficient accuracy ~ with minimal
computational overhead.

e Deterministic execution plans are
advantageous when explainability,

predictability, or minimal runtime overhead
is required.

e Al-assisted methods may incur significant
training time or require careful feature
engineering before consistently
outperforming traditional systems [14], [15].

3) Transition Toward Hybrid Optimizers

Combining Al-based with

traditional cost models can balance accuracy,
efficiency, and interpretability.

e Hybrid approaches enable incremental
adoption of Al techniques in production

. estimators

DBMS environments without
compromising reliability.
4) Key Takeaways
Al-assisted optimization provides clear
advantages in complex, dynamic, and

distributed query workloads, while traditional
optimization methods remain relevant for
simpler, stable scenarios. The convergence of
Al and adaptive optimization paves the way for
practical, production-ready hybrid systems.

1. Discussion and Implications

The experimental evaluation across multiple
studies highlights several key implications for
Al-assisted query optimization in both practical
deployment and research contexts.

1) Real-World Deployment

Al-assisted optimizers, such as Neo and

End-to-End models, demonstrate significant
improvements in query runtime and

http:/www.ijctjournal.org

https://ijctjournal.org/

estimation accuracy, particularly for
complex queries and workloads with highly
correlated tables and predicates [15], [22].

e Training overhead and system-specific
dependencies must be carefully managed;
one-time model training is generally
justified when amortized over repeated
queries or long-running workloads [14],
115].

e Integration into production DBMSs can
benefit from hybrid strategies that combine
Al-guided decisions with traditional cost-
based heuristics, balancing robustness,
reliability, and interpretability [24], [4].

2) DBMS Design Considerations

e Support for online learning and adaptive re-
optimization allows optimizers to respond
dynamically to shifting workloads and data
distributions, enhancing resilience in
distributed or high-throughput systems [24] .
Al models must be paired with effective
feature representations, such as row
embeddings or predicate encodings, to
generalize across query patterns and unseen
workloads [15], [22].
® Systems should provide telemetry and
execution feedback mechanisms to facilitate
model training, validation, and continuous
improvement.

3) Research Directions

e Exploration of transfer learning, meta-
learning, and domain adaptation to reduce
training cost and improve generalization
across heterogeneous workloads.

e Development of explainable Al-assisted
optimization, enhancing transparency, user
trust, and debuggability of complex query
plans [14].

e Evaluation on diverse benchmarks and real-

world datasets to address limitations of

standard workloads (e.g., TPC-H, JOB) and

reduce benchmark bias [15], [22].

Investigation of customizable optimization

goals, such as per-query latency targets,

SLAs, or workload prioritization, to align

Page 278

https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

Al-assisted planning with practical business
objectives [14].

V1. CONCLUSION

Al-assisted query optimizers have
demonstrated clear advantages over traditional
cost-based and rule-based systems. By
leveraging machine learning and deep learning
models, these optimizers can significantly
reduce cardinality and cost estimation errors,
resulting in improved query execution
performance across diverse workloads,
including unseen queries and complex predicate
structures. Models such as Neo and End-to-End
illustrate the ability to generalize beyond the
training data, dynamically adapting to changes
in data distributions and query patterns—a
capability that remains a key limitation of
conventional systems.

Despite these advancements, several
challenges persist. Deep learning models often
function as black boxes, making interpretability
and debugging difficult. The integration of
adaptive and online learning mechanisms
introduces runtime overhead, which may affect
overall system efficiency. Furthermore,
performance can vary depending on the
underlying DBMS, hardware, and benchmark
choice, raising concerns about reproducibility
and general applicability.

Future research should focus on explainable
and hybrid optimization frameworks that
combine the reliability of traditional methods
with the adaptability of Al-assisted approaches.
Emphasis on robust evaluation, realistic
workloads, and production-ready deployment
will be crucial for translating experimental gains
into operational database systems, ensuring that
Al-assisted optimization can be safely and
effectively integrated into real-world
environments.

VII. REFERENCES

[1] Almeida, Fernando, Pedro Silva, and Fernando Aradjo. 2019.
“Performance Analysis and Optimization Techniques for Oracle
Relational Databases.” Cybernetics and Information Technologies
19 (2): 117-32. https://doi.org/10.2478/cait-2019-0019.

http://www.ijctjournal.org

https://ijctjournal.org/

[2] Ammar, Ali Ben. 2016. “Query Optimization Techniques in Graph
Databases.” International Journal of Database Management
Systems 8 (4): 01-14. https://doi.org/10.5121/ijdms.2016.8401.

[3] Azhir, Elham, Nima Jafari Navimipour, Mehdi Hosseinzadeh,
Arash Sharifi, and Aso Darwesh. 2019. “Query Optimization
Mechanisms in the Cloud Environments: A Systematic Study.”
International Journal of Communication Systems 32 (8).
https://doi.org/10.1002/dac.3940.

[4] Chaudhuri, Surajit. 1998. “An Overview of Query Optimization in
Relational Systems.” Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (Seattle Washington USA), May, 34-43.
https://doi.org/10.1145/275487.275492.

[5] A. Aljanaby, E. Abuelrub, and M. Odeh, “A Survey of Distributed
Query Optimization.”

[6] Dantuluri, Venkata Narasimha Raju. 2025. “Al-Powered Query
Optimization in Multitenant Database Systems.” Journal of
Computer Science and Technology Studies 7 (4): 802-13.
https://doi.org/10.32996/jcsts.2025.7.4.93.

[71 Ganguly, Sumit, Akshay Goel, and Avi Silberschatz. 1996.
“Efficient and Accurate Cost Models for Parallel Query
Optimization (Extended Abstract).” Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (Montreal Quebec Canada), June, 172-81.
https://doi.org/10.1145/237661.237707.

[8] Heitz, Jonas, and Kurt Stockinger. 2019. Join Query Optimization
with Deep Reinforcement Learning Algorithms. arXiv.
https://doi.org/10.48550/arXiv.1911.11689.

[9] Inersjo, Elizabeth. 2021. Comparing Database Optimisation
Techniques in PostgreSQL : Indexes, Query Writing and the Query
Optimiser. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-
306703.

[10] Jarke, Matthias, and Jurgen Koch. 1984. “Query Optimization in
Database Systems.” ACM Computing Surveys 16 (2): 111-52.
https://doi.org/10.1145/356924.356928.

[11] Krishnan, Sanjay, Zongheng Yang, Ken Goldberg, Joseph
Hellerstein, and lon Stoica. 2019. Learning to Optimize Join
Queries With Deep Reinforcement Learning. arXiv.
https://doi.org/10.48550/arXiv.1808.03196.

[12] Lehmann, Claude, Pavel Sulimov, and Kurt Stockinger. 2024. Is
Your Learned Query Optimizer Behaving As You Expect? A
Machine Learning Perspective. arXiv.
https://doi.org/10.48550/arXiv.2309.01551.

[13] Li, Ziming, Youhuan Li, Yuyu Luo, Guoliang Li, and Chuxu
Zhang. 2025. Graph Neural Networks for Databases: A Survey.
arXiv. https://doi.org/10.48550/arXiv.2502.12908.

[14] Marcus, Ryan, Parimarjan Negi, Hongzi Mao, et al. 2019. “Neo:
A Learned Query Optimizer.” Proceedings of the VLDB
Endowment 12 (11): 1705-18.
https://doi.org/10.14778/3342263.3342644.

[15] Marcus, Ryan, and Olga Papaemmanouil. 2018. Towards a Hands-
Free Query Optimizer Through Deep Learning. arXiv.
https://doi.org/10.48550/arXiv.1809.10212.

[16] Mikhaylov, Artem, Nina S. Mazyavkina, Mikhail Salnikov, Ilya
Trofimov, Fu Qiang, and Evgeny Burnaev. 2022. “Learned Query

Page 279

https://doi.org/10.2478/cait-2019-0019
https://doi.org/10.5121/ijdms.2016.8401
https://doi.org/10.1002/dac.3940
https://doi.org/10.1145/275487.275492
https://doi.org/10.32996/jcsts.2025.7.4.93
https://doi.org/10.1145/237661.237707
https://doi.org/10.48550/arXiv.1911.11689
https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-306703
https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-306703
https://doi.org/10.1145/356924.356928
https://doi.org/10.48550/arXiv.1808.03196
https://doi.org/10.48550/arXiv.2309.01551
https://doi.org/10.48550/arXiv.2502.12908
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.48550/arXiv.1809.10212
https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

[17]

(18]

[19]

[20]

ISSN :2394-2231

International Journal of Computer Techniques—IJCT Volume 13 Issue 1, Jan-Feb - 2026

Open Access and Peer Review Journal ISSN 2394-2231

Optimizers: Evaluation and Improvement.” IEEE Access 10:
75205-18. https://doi.org/10.1109/ACCESS.2022.3190376.

Ortiz, Jennifer, Magdalena Balazinska, Johannes Gehrke, and S.
Sathiya Keerthi. 2019. An Empirical Analysis of Deep Learning
for Cardinality Estimation. arXiv.
https://doi.org/10.48550/arXiv.1905.06425.

Padia, Shyam, Sushant Khulge, Akhilesh Gupta, and Parth
Khadilikar. 2015. Query Optimization Strategies in Distributed
Databases. 6.

P Karthikeyan, M., K. Krishnaveni, and Dac-Nhuong Le. 2024.
“Analysis of Multi-Join Query Optimization Using ACO and Q-
Learning.” International Journal of Computing and Digital
Systems 16 (1): 1523-33. https://doi.org/10.12785/ijeds/1601113.

Ramadan, Mohamed, Ayman El-Kilany, Hoda M. O. Mokhtar, and
Ibrahim Sobh. 2022. “RL_QOptimizer: A Reinforcement Learning
Based Query Optimizer.” IEEE Access 10: 70502-15.
https://doi.org/10.1109/ACCESS.2022.3187102.

(21]

[22]

(23]

[24]

[25]

http://www.ijctjournal.org

https://ijctjournal.org/

Schmidt, Michael, Olaf Goérlitz, Peter Haase, Giinter Ladwig,
Andreas Schwarte, and Thanh Tran. 2011. “FedBench: A
Benchmark Suite for Federated Semantic Data Query Processing.”
In The Semantic Web — ISWC 2011, edited by Lora Aroyo, Chris
Welty, Harith Alani, et al. Springer. https://doi.org/10.1007/978-
3-642-25073-6_37.

Sun, Ji, and Guoliang Li. 2019. An End-to-End Learning-Based
Cost Estimator. arXiv. https://doi.org/10.48550/arXiv.1906.02560.

Zhou, Xuanhe, Chengliang Chai, Guoliang Li, and Ji Sun. n.d.
Database Meets Al: A Survey.

D. J. Rigden, “Adaptive Query Optimization in Distributed SQL
Databases,” International Journal of Technology Management, vol.
2,no. 3.

R. Marcus and O. Papaemmanouil, “Plan-Structured Deep Neural
Network Models for Query Performance Prediction,” Proceedings
of the VLDB Endowment, vol. 12, no. 11, pp. 1733-1746, Jul.
2019, arXiv:1902.00132 [cs]. [Online]. Available:
http://arxiv.org/abs/1902. 00132

Page 280

https://doi.org/10.1109/ACCESS.2022.3190376
https://doi.org/10.48550/arXiv.1905.06425
https://doi.org/10.12785/ijcds/1601113
https://doi.org/10.1109/ACCESS.2022.3187102
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.48550/arXiv.1906.02560
http://arxiv.org/abs/1902
https://ijctjournal.org/
https://ijctjournal.org/
http://www.ijctjournal.org

	Keywords — Query Optimization, Relational Database
	I.INTRODUCTION
	II.FUNDAMENTALS OF QUERY OPTIMIZATION
	CPU Cost:
	I/O Cost:
	Memory Cost:
	CommunicationCost(for Parallel/Distributed Syste
	Total Cost
	Selection
	Projection
	Join
	Multiple Predicates
	Advantages:
	Limitations:
	Cost Considerations:
	III.AI TECHNIQUES IN QUERY OPTIMIZATION
	Join Order Optimization
	Plan Selection and Re-optimization
	Index Tuning and Caching Decisions
	IV.COMPARATIVE ANALYSIS
	V.EXPERIMENTAL EVALUATION
	Adaptive and online optimization:
	VI.CONCLUSION
	VII.REFERENCES

