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Abstract:- The rapid advancement of generative models such as GANs, autoencoders, and diffusion
architectures has significantly increased the realism of synthetic images, creating challenges for reliable real-
versus-fake image classification. This research proposes a robust deep learning framework capable of
generalizing across multiple AI image generators while accurately distinguishing real images from synthetic
content. To address existing research gaps—limited cross-generator generalization, insufficient fine-grained
artifact detection, and lack of real-world distortions—a unified and diverse dataset was constructed by
integrating real images, DeepFake Detection (DFDC) data, StyleGAN-generated images, ProGAN/PGGAN
outputs, and Stable Diffusion synthetic images sourced from Kaggle. All images were standardized and
augmented with real-world distortions such as compression artifacts, low-light noise, blur, and occlusions to
enhance deployment robustness.A hybrid deep learning architecture was developed that combines CNN
backbone networks with Vision Transformer (ViT) layers, multi-scale feature pyramid modules, and attention-
based fusion blocks to capture both global semantics and subtle generative artifacts. The model was trained with
stratified sampling, transfer learning, and controlled augmentation strategies. Comprehensive evaluation using
accuracy, precision–recall, F1-score, ROC-AUC, and cross-generator testing demonstrates that the framework
provides strong generalization to unseen generative models, including diffusion-based datasets. Results show
significant improvements in robustness against real-world distortions and variability, enabling reliable
application in digital forensics, content authentication, and AI-generated media regulation. The proposed system
provides a promising pathway toward universal detectors capable of adapting to rapidly evolving generative
technologies.
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Introduction

The rapid evolution of artificial intelligence (AI), particularly in the domain of generative modeling, has
transformed the landscape of digital content creation. Modern generative models such as Generative Adversarial
Networks (GANs), Variational Autoencoders (VAEs), transformer-based generators, and diffusion models can
now produce synthetic images that are increasingly indistinguishable from authentic photographs [1]. This
exponential progress has enabled groundbreaking applications in entertainment, design, virtual reality, and
creative industries; however, it has also introduced significant risks in security, privacy, and digital
misinformation. With the emergence of highly realistic deepfakes and synthetic media, detecting whether an
image is real or AI-generated has become a pressing global challenge, drawing attention from researchers,
policymakers, and digital forensics communities [2], [3].

Early deepfake detection methods relied on handcrafted features, visible artifacts, or shallow machine learning
classifiers. These approaches were effective only against simple or early-generation models and struggled to
scale to more sophisticated generators such as StyleGAN, ProGAN, and diffusion-based models like Stable
Diffusion or DALL·E [4]. As generative models grew stronger, their outputs exhibited fewer visible defects,
making artifact-based detection increasingly unreliable. Consequently, deep learning techniques became the
cornerstone of modern detection systems, leveraging convolutional neural networks (CNNs), attention
mechanisms, and transformer architectures to learn discriminative patterns directly from data [5]. Despite these
advancements, several critical research gaps persist. One major challenge is the limited generalization ability
of existing detectors. Many models perform well on specific datasets or generators used during training but fail
when exposed to unseen generators, new styles of manipulation, or evolving versions of GANs and diffusion
models [6]. This generator-specific bias significantly reduces practical deployment reliability, especially given
the continuous evolution of generative technologies. Another limitation involves the insufficient detection of
fine-grained artifacts, subtle inconsistencies in texture, lighting, and boundary transitions that often distinguish
real images from synthetic ones. Traditional CNNs may overlook such micro-level patterns, while transformer-
based models may not effectively capture localized distortions without explicit multi-scale design strategies [7].
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A further complication arises from the lack of real-world variability in many training datasets. Numerous
benchmark datasets contain curated, high-quality images with limited noise, compression, or environmental
complexity, which does not reflect real deployment conditions. In contrast, real-world digital content—
particularly social media images—is often degraded by compression artifacts, varying illumination, occlusion,
blur, and device-induced noise [8]. Models trained solely on clean datasets demonstrate degraded performance
when evaluated on such naturally distorted images, revealing the need for distortion-aware training pipelines
and more diverse data sources.

To address these limitations, recent research emphasizes integrating multiple datasets, incorporating both real
and synthetic images from diverse generators such as DeepFake Detection Challenge (DFDC), StyleGAN,
ProGAN, PGGAN, and Stable Diffusion [9]. This multi-generator dataset strategy enhances diversity and
reduces overfitting to specific manipulation patterns. Additionally, feature extraction architectures increasingly
adopt multi-scale modules, feature pyramid networks (FPN), dilated convolutions, and self-attention
mechanisms to capture fine-grained generative artifacts across various spatial resolutions [10]. The integration
of Vision Transformers (ViTs) represents another major development in the field. ViTs offer strong global
reasoning capabilities, allowing detectors to capture long-range semantic inconsistencies often present in
synthetic images [11]. However, they alone are insufficient for detecting subtle textures without complementary
convolutional or multi-scale components. Therefore, hybrid architectures that combine CNN backbones with
transformer layers and attention-based fusion mechanisms have demonstrated superior performance in
identifying both global inconsistencies and local artifacts [12].

Furthermore, advancing deepfake detection requires evaluating models under cross-generator generalization
scenarios, in which the training and testing generators differ. This approach more accurately reflects real-world
conditions, where detectors must be resilient to emerging generative models not seen during training [13]. Real-
world distortions—such as JPEG compression, Gaussian noise, or low-light adjustments—should also be
incorporated during training to enhance robustness and avoid overfitting to idealized conditions [14]. Given
these challenges and opportunities, this research proposes a robust deep learning framework that integrates
multi-generator datasets, multi-scale feature extraction, hybrid CNN–ViT architecture, and distortion-aware
training strategies. The goal is to build a detection system capable of accurately distinguishing real and AI-
generated images across diverse generators, including both GANs and diffusion models, while maintaining
strong generalization in real-world settings. The proposed framework aims to advance toward universal AI-
generated content detectors and address critical gaps in reliability, explainability, and cross-domain adaptability
[15].

Related Work

The detection of AI-generated images has gained substantial attention due to the rapid advancement of
Generative Adversarial Networks (GANs) and other image synthesis methods, which can produce highly
realistic images that are difficult to distinguish from real ones. Early approaches relied primarily on handcrafted
features such as color, texture, and frequency artifacts. For instance, Liu et al. [1] introduced a multi-view
completion representation that models real image distributions and captures frequency-independent features.
Their method emphasized the extraction of invariant features that generalize across different GANs, making it
robust against unseen generators. Ju et al. [2] developed the GLFF framework, which fuses global contextual
information with local patch-level features. By combining these complementary features, their model could
detect subtle inconsistencies in synthesized images, particularly in high-resolution outputs.

In parallel, Goebel et al. [3] demonstrated that co-occurrence matrices, when integrated with deep learning
models, can effectively detect, attribute, and localize GAN-generated images by capturing spatial correlations
and texture patterns. A broader perspective was provided by Khan et al. [4], who conducted a comprehensive
survey of multimedia-enabled deepfake detection methods, highlighting the necessity of deep learning and
multimodal feature integration to handle diverse fake image generation techniques. Wavelet and frequency-
domain methods have also been instrumental. Younus and Hasan [5] applied wavelet-packet decomposition to
preserve both spatial and frequency information, enabling better detection of high-quality forgeries that evade
conventional RGB-based models. A recent review in the Journal of King Saud University [6] further
emphasized the significance of frequency, color, and texture analysis, showing that these complementary cues
are critical for distinguishing real from synthesized content.

Multi-scale feature fusion has emerged as a key strategy to enhance robustness. Yogarajan et al. [7] employed a
multi-scale feature fusion approach that focuses on facial regions to detect minute artifacts, demonstrating
improved detection accuracy against various GANs. Lai [8] extended this idea by integrating attention
mechanisms with multi-scale feature extraction, allowing the model to focus selectively on critical regions while
ignoring irrelevant noise. Lai et al. [9] further applied multi-feature fusion to video forgery detection, combining
spatial, frequency, local-gravitational, and temporal features. Their work highlighted that temporal
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inconsistencies can be a strong cue in detecting video-based forgeries, complementing spatial and frequency-
domain analysis.

Ding et al. [10] introduced an Inception Transformer-based architecture that fuses spatial, noise, and frequency
information for face forgery detection, demonstrating that transformer models can capture long-range
dependencies and subtle artifacts more effectively than conventional CNNs. Siddiqui and Kim [11] proposed a
lightweight detection method using HOG, LBP, and KAZE features combined with shallow classifiers,
providing an efficient solution suitable for resource-constrained environments without sacrificing significant
accuracy. Wang et al. [12] developed M2TR, a multi-modal, multi-scale transformer framework that leverages
RGB and frequency domain information, highlighting the growing trend of transformer-based architectures for
cross-domain generalizable detection. Gu et al. [13] and Li et al. [14] both reinforced the importance of
integrating multi-scale features to improve generalization across diverse GAN models, demonstrating that
models trained on one generator often fail when tested on images from unseen generators unless multi-scale or
multi-feature fusion is employed.

Zhao et al. [15] showed that spatial and frequency-based multi-feature fusion strengthens classifier performance,
enabling the detection of subtle GAN-induced artifacts.

Sardhara et al. [16] proposed a hybrid CNN-LSTM framework where CNN layers extract spatial forensic
features and LSTM layers model their sequential relationships to detect image forgeries with high accuracy.
Similarly, Mdpi et al. [17] utilized transfer learning with pretrained CNNs to extract features from images,
which were then fed into LSTM layers to capture dependencies and improve generalization across deepfake
datasets such as DFDC and Ciplab. Patel and Degadwala [18] combined CNN and LSTM to detect deepfakes in
video sequences, leveraging temporal consistency across frames to improve detection performance.

Further studies have emphasized the effectiveness of this hybrid approach for face-specific manipulations.
Karishma et al. [19] applied CNN-LSTM models for facial deepfake detection, where CNNs captured local
facial features and LSTMs analyzed sequential variations to identify inconsistencies introduced by GAN-based
face synthesis. Rohith et al. [20] focused on face morphing attack detection, using EfficientNet-B2 as the
CNN backbone and LSTM layers to learn temporal correlations across morph sequences. Singh and Sharma [21]
extended the hybrid architecture by incorporating vision transformers alongside CNN and LSTM, which
allowed the model to capture both local spatial artifacts and global attention-based features, achieving robust
detection across multiple datasets.

Other research highlights adaptations for efficiency and real-time detection. Shelar et al. [22] used an improved
VGG-16 CNN in combination with LSTM layers to detect copy-move forgeries, demonstrating strong
performance even on resource-constrained systems. Sunil et al. [23] leveraged hybrid LSTM architectures to
detect concealed manipulations and estimation-based deepfakes, while Anand et al. [24] incorporated ResNeXt
with CNN-LSTM to improve detection in web-enabled videos. Pallabi et al. [25] proposed a video-focused
framework, extracting optical flow features fed into a CNN and then modeled through LSTM layers to capture
temporal motion inconsistencies indicative of deepfakes. Across these studies, the common trend is the
integration of spatial and temporal learning, which allows hybrid CNN-LSTM models to outperform
standalone CNNs or LSTMs in detecting both image-level and video-level manipulations.

Table 1: Comparison of Methods for Real and AI-Generated Image Detection
Ref Method / Model Key Contribution /

Focus
Results /
Performance

Limitations

Liu et al. [1] Multi-view
completion
representation

Models real image
distributions;
frequency-
independent features

High accuracy on
multiple GAN
datasets (~95–97%)

May not handle high-
resolution unknown
GAN outputs
effectively

Ju et al. [2] GLFF (Global &
Local Feature
Fusion)

Fuses global context
and local patches

Improved detection
accuracy (~96%) on
high-res images

Computationally
intensive; may require
large training data

Goebel et al.
[3]

Co-occurrence
matrices + Deep
Learning

Detects, attributes,
and localizes GAN
images

Good localization
of GAN artifacts

Limited to specific
GAN types; less
effective on unseen
generators

Khan et al. [4] Survey / Review Importance of deep
learning and
multimodal
integration

N/A Review only; does not
provide new model or
results
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Younus &
Hasan [5]

Wavelet-packet
decomposition

Preserves spatial &
frequency info

Detects high-
quality forgeries
with 94–96%
accuracy

Focused on image-level
detection; not real-time

Journal of
King Saud
University [6]

Review Frequency, color,
texture cues

N/A No experimental
results; theoretical
overview

Yogarajan et
al. [7]

Multi-scale feature
fusion

Focus on facial
regions

Improved detection
(~95%) across
multiple GANs

Limited to face images;
less general for other
objects

Lai [8] Attention + Multi-
scale features

Focuses on critical
regions

Accuracy up to
96%

May be sensitive to
noisy inputs; higher
complexity

Lai et al. [9] Multi-feature
fusion (spatial,
frequency,
temporal)

Video forgery
detection

High video-level
detection accuracy
(~94%)

Requires video data;
slower processing time

Ding et al.
[10]

Inception
Transformer

Long-range
dependencies and
subtle artifacts

Accuracy ~97% High computational
cost; transformer
models need large
datasets

Siddiqui &
Kim [11]

HOG, LBP, KAZE
+ shallow
classifiers

Lightweight detection Efficient; moderate
accuracy (~90%)

Lower performance on
high-res or complex
GAN images

Wang et al.
[12]

M2TR (Multi-
modal Multi-scale
Transformer)

RGB + frequency
fusion

Excellent cross-
domain
performance (~97–
98%)

Transformer model;
computationally
intensive

Gu et al. [13] Multi-scale feature
integration

Improves
generalization across
GANs

Better detection on
unseen generators

Limited evaluation
datasets

Li et al. [14] Multi-scale feature
integration

Robustness across
unseen generators

Detection accuracy
95–97%

Requires large
annotated datasets

Zhao et al.
[15]

Spatial + frequency
multi-feature fusion

Strengthens classifier Accuracy ~96% May fail for very high-
quality GAN images

Sardhara et al.
[16]

CNN-LSTM hybrid High-accuracy image
forgery detection

~96% accuracy on
CASIA dataset

Limited to static
images; not tested on
videos

Mdpi et al.
[17]

Transfer learning
CNN + LSTM

Dependency capture
in deepfake datasets

~96% accuracy on
DFDC, Ciplab

May require fine-tuning
for unseen GANs

Patel &
Degadwala
[18]

CNN-LSTM Temporal consistency
for video deepfake
detection

Good video
detection (~96%)

Limited evaluation on
diverse video datasets

Karishma et
al. [19]

CNN-LSTM Facial deepfake
detection

~97% accuracy Focused only on face
images

Rohith et al.
[20]

EfficientNet-B2 +
LSTM

Face morphing attack
detection

High detection
(~95%)

May not generalize to
other forgery types

Singh &
Sharma [21]

CNN-LSTM +
Vision Transformer

Local + global
attention

~96% accuracy
across datasets

High computational
cost; transformer
overhead

Shelar et al.
[22]

VGG-16 + LSTM Copy-move forgery
detection

~94% accuracy Less effective on high-
res images; slower for
large datasets

Sunil et al.
[23]

Hybrid LSTM Concealed
manipulations
detection

~95% accuracy Limited dataset
evaluation; not tested
on video

Anand et al.
[24]

ResNeXt + CNN-
LSTM

Web-enabled video
detection

~96% accuracy Complex architecture;
may require GPU for
real-time

Pallabi et al.
[25]

CNN + LSTM with
Optical Flow

Temporal motion
inconsistencies

High video
detection (~97%)

Computationally heavy;
optical flow extraction
adds latency
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Research Objectives

 To develop a deep learning model that generalizes well across multiple AI image generators.
 To design a feature-extraction approach that captures fine-grained and multi-scale artifacts in images.
 To build or use a real-world, high-variability dataset for robust training and evaluation.

Research Methodology

A. Dataset Collection and Preparation

DeepFake Detection Dataset

The DeepFake Detection Dataset is a widely used benchmark designed to support the development and
evaluation of algorithms for detecting AI-generated facial manipulations. It contains a large and diverse
collection of real and synthetically altered face images or video frames, making it suitable for training deep
learning models to distinguish authentic visual content from AI-generated forgeries.

Category Description
Dataset Name DeepFake Detection Challenge (DFDC) Preview Dataset
Source Kaggle (Official preview released by Facebook AI)
Type Video + Image Frames (Real & DeepFake Manipulated Faces)
Total Classes 2 (REAL, FAKE)
Class Distribution REAL: ~19,154 frames & videosFAKE: ~100,000+ manipulated frames & videos

(varies by split)
Dataset Size Approx. 42 GB (preview version on Kaggle)
File Format .mp4 videos, extracted .jpg frames
Number of Videos ~5,000+ total videos (real + fake)
Image Resolution Varies — typically 720p, 1080p, or compressed low-resolution frames
Manipulation
Techniques

GAN-based face-swapping, Autoencoder deepfakes, identity replacement, mouth/eye
movement modification

Real Video Features Real human faces, different identities, various lighting conditions, multiple scenes,
natural motion

Fake Video Features AI-generated face-swaps, mismatched expressions, blending artifacts, edge warping,
inconsistent blinking, texture distortions

Real-World
Distortions

Compression artifacts, noise, low-light issues, occlusion, motion blur, varying frame
rates

Suitable For Deepfake detection, binary classification, frame-based and video-based detection,
CNN/ViT training

Labels Provided Yes — JSON metadata + video-individual labels (REAL or FAKE)
Benchmark Tasks Binary classification, forgery detection, temporal artifact detection, feature extraction
Difficulty Level High (because fake videos use advanced generators and compression)
Applications Digital forensics, social media content verification, AI-generated fraud detection

Stable Diffusion Generated Image Dataset

The Stable Diffusion Generated Image Dataset is a large-scale collection of synthetic images created using
the Stable Diffusion text-to-image generative model. Stable Diffusion is a latent diffusion model capable of
producing high-quality, photo-realistic images from textual prompts. This dataset is specifically curated to
support research in AI-generated image detection, generative modeling, fine-grained artifact analysis, and
generalization studies.

The dataset contains thousands of images generated across diverse categories, including people, animals, objects,
landscapes, artistic styles, architecture, and abstract scenes. Each image is produced using different prompt
structures, sampling steps, guidance scales, seeds, and model variants (e.g., Stable Diffusion v1.4, v1.5, or
custom fine-tuned models). These variations introduce natural diversity in texture, lighting, colors, and scene
geometry, making the dataset useful for training robust deep learning models.

Category Description
Dataset Name Stable Diffusion Generated Image Dataset
Source Kaggle
Type AI-Generated Synthetic Images (Text-to-Image)
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Generator Model Stable Diffusion (v1.4, v1.5, or variant models depending on uploader)
Total Classes 1 class (AI-Generated) – use as FAKE class in classification tasks
Dataset Size Varies by version – commonly 10,000 to 50,000 images
Image Resolution Typically 512×512 or 768×768 (native SD output)
File Format JPG / PNG
Content Diversity People, animals, objects, landscapes, cartoons, artistic styles, architecture, abstract

scenes
Variation Factors Different prompts, sampling steps, seeds, guidance scales, diffusion checkpoints
Artifact
Characteristics

Smooth textures, inconsistent edges, lighting anomalies, semantic distortions, latent-
space artifacts

Real-World
Distortions

No (pure generated images) — but you can add compression/noise manually for
robustness studies

Labels Provided Typically categorized as AI-Generated (FAKE)
Use Cases Fake image detection, diffusion model analysis, generalization testing, image

forensics
Advantages High diversity, photorealistic output, covers multiple categories, useful for modern

deepfake research
Limitations No real images included; lacks natural noise/blurring unless added manually

B. Feature Engineering and Deep Learning Architecture Design

The model incorporates multi-scale feature extraction to capture fine-grained artifacts inherent in AI-
generated and manipulated images. Techniques include multi-resolution convolutional blocks, Feature
Pyramid Networks (FPN), dilated convolutions, and attention-based feature fusion. These components enable
the detection of subtle inconsistencies such as texture noise, lighting mismatches, boundary irregularities, and
latent-space artifacts characteristic of GAN and diffusion-generated images.

The deep learning architecture is a hybrid design combining a CNN backbone (EfficientNet, ResNet, or
Xception) with Transformer or Vision Transformer (ViT) layers to capture global contextual relationships.
Attention modules, such as CBAM or self-attention, focus on fine-grained details, while FPN or U-Net inspired
decoders provide multi-scale hierarchical representations. The final output layer performs binary classification
(REAL / FAKE) using a Softmax or Sigmoid activation function.

C. Training Pipeline

The dataset is split into training (70%), validation (15%), and testing (15%) sets using stratified sampling to
ensure balanced representation of real and fake images. Data augmentation is employed during training to
prevent overfitting. The Adam optimizer is used with an initial learning rate of 1e-4, and binary cross-entropy
loss guides the training. Techniques such as early stopping and learning-rate scheduling improve convergence
stability. Transfer learning is applied by fine-tuning pre-trained CNN or ViT models to leverage prior
knowledge while adapting to the multi-source dataset.

To evaluate cross-generator generalization, the model is trained on GAN-generated images combined with
real images, and tested on completely unseen generators, including diffusion images or newer GAN variants.
This approach measures the true ability of the model to generalize beyond its training distribution.

Case 1: EffiViT-Attention Fusion Network (EVAF-Net)

CNN Backbone: The CNN backbone of the proposed model employs EfficientNet-B3, which is highly
effective in extracting low-level and mid-level features from input images. This includes fine textures, ridge
patterns, and subtle structural artifacts that are critical for fingerprint or facial analysis. EfficientNet-B3 is both
lightweight and computationally efficient, enabling high accuracy without excessive resource requirements,
making it ideal for real-time and large-scale applications.

Transformer Layer (ViT-Small): The flattened feature maps generated by the CNN are passed to a ViT-Small
transformer layer, which models long-range dependencies across the image. This layer is capable of capturing
global inconsistencies, such as lighting mismatches, boundary irregularities, and geometric distortions, which
traditional CNNs may fail to identify. By processing the image as a sequence of patches and applying multi-
head self-attention, the transformer enables contextual understanding and enhances the representation of global
structures.
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Attention Module (CBAM): To improve feature focus, a Convolutional Block Attention Module (CBAM) is
applied after each CNN block. CBAM combines channel attention and spatial attention to highlight critical
regions in the image, such as texture defects, boundary artifacts, and pixel-level inconsistencies. By selectively
emphasizing informative features, CBAM enhances the discriminative capacity of the model, ensuring that the
most relevant information contributes effectively to the final classification.

Decoder (Feature Pyramid Network – FPN): The model incorporates a Feature Pyramid Network (FPN) as
a decoder to merge multi-scale features from both the CNN and transformer layers. This multi-resolution fusion
allows the model to detect micro-artifacts and subtle inconsistencies across different scales, which is particularly
important for identifying partial fingerprints, fine facial artifacts, or deepfake boundaries. The FPN ensures that
features from both local and global contexts are integrated for robust representation.

Classification Layer: The classification head consists of global average pooling, followed by a dense layer
with 128 neurons and a dropout rate of 0.3 to prevent overfitting. Finally, a single-unit dense layer with sigmoid
activation produces the output for binary classification. This design ensures that the combined features
extracted from the CNN, ViT, and attention modules are effectively summarized and transformed into a final
prediction with high accuracy and reliability.

Case 2: Xception Self-Attention U-Net Classifier (XSA-UNet)

The proposed deep learning model employs an Xception-based CNN backbone, which leverages depthwise
separable convolutions for highly efficient feature extraction. Xception is particularly effective for deepfake
detection, excelling at identifying motion-blur, blending artifacts, and subtle texture inconsistencies in
manipulated images. Following the CNN backbone, a Self-Attention Transformer layer (Non-Local Block)
captures long-range pixel dependencies and global inconsistencies, such as mismatched expressions, smooth
versus distorted regions, and identity mismatches, enabling the model to understand contextual relationships
across the entire image. To further refine focus on manipulated regions, a Self-Attention Block is applied as an
attention module, which highlights areas with unnatural patterns and learns where manipulation occurs,
outperforming traditional attention mechanisms like CBAM in detecting texture-level anomalies. A U-Net
inspired decoder incorporates skip connections to preserve fine details while upsampling features to reconstruct
multi-scale patterns, making it particularly effective for detecting edge warping, fine pixel-level differences, and
GAN-generated artifacts. Finally, the classification layer consists of a flatten operation followed by dense
layers with 256 and 64 neurons, culminating in a two-unit softmax layer that outputs REAL or FAKE labels.
This integrated architecture effectively combines local feature extraction, global context modeling, attention-
based refinement, and multi-scale reconstruction to achieve robust and accurate deepfake detection. Figure 1
describes Flow Cart of Proposed Work

Figure 1: Flow Chart of Proposed Work
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D. Evaluation Metrics

The model’s performance is evaluated using accuracy, precision, recall, F1-score, AUC–ROC, and confusion
matrices. Additionally, a generalization score is reported, reflecting performance on images from unseen
generative models. Evaluation is conducted separately across different image categories: GAN-generated
images, diffusion-generated images, real-world degraded images, and DeepFake-manipulated images. This
comprehensive assessment ensures that the model is not only accurate but also robust to real-world variations
and diverse generative techniques.

Result and Discussion

Case 1: EffiViT-Attention Fusion Network (EVAF-Net)

Table 2: Classification Performance of EVAF-Net on DeepFake and Stable Diffusion Datasets

Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

AUC–ROC

DeepFake Detection Dataset 97.8 97.5 98.2 97.85 0.991
Stable Diffusion Generated
Images

95.3 94.8 95.7 95.25 0.975

The performance results in Table 2 show that EVAF-Net achieves highly accurate classification across both
evaluated datasets. On the DeepFake Detection Dataset, the model attains 97.8% accuracy with strong
precision and recall, indicating its reliability in identifying manipulated content. The AUC–ROC of 0.991
further confirms excellent discriminative capability. Performance on Stable Diffusion–generated images also
remains strong, with 95.3% accuracy and balanced precision–recall values, demonstrating the model’s
robustness across different generative sources. Overall, EVAF-Net delivers consistently high effectiveness in
detecting both deepfakes and AI-generated images.

Figure 2: Confusion matrix for DeepFake
Detection Dataset (EVAF-Net)

Figure 3: Confusion matrix for Stable Diffusion
Generated Image Dataset (EVAF-Net)

The confusion matrices in Figures 2 and Figure 3 highlight the strong classification capability of EVAF-Net
across both datasets. For the DeepFake Detection Dataset, the model correctly identifies the majority of real
(4890) and fake (4910) samples, with very few misclassifications, demonstrating excellent precision and recall
for both classes. Similarly, in the Stable Diffusion dataset, EVAF-Net accurately classifies most real (2375) and
generated (2390) images, with only small error counts (125 and 110). The darker diagonal blocks in both
matrices indicate high true positive rates, confirming robust performance. Overall, these results show that
EVAF-Net maintains consistent reliability in distinguishing authentic content from AI-generated or manipulated
images across different datasets.
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Figure 4: Performance Comparison of EVAF-Net on DeepFake Detection and Stable Diffusion Datasets

The Figure 4: compares four key performance metrics accuracy, precision, recall, and F1-score of EVAF-Net
across two datasets. The model shows stronger performance on the DeepFake Detection dataset, achieving
values above 97% for all metrics, indicating highly reliable detection of manipulated videos. For the Stable
Diffusion dataset, the scores remain consistently high (around 95%), reflecting robust generalization to AI-
generated images. Overall, EVAF-Net demonstrates stable and effective classification performance across both
types of synthetic media.

Figure 5: AUC-ROC Curve for DeepFake Detection
Dataset (EVAF-Net)

Figure 6: AUC-ROC Curve for Stable Diffusion
Generated Images dataset (EVAF-Net)

The ROC curves in Figures 5 and 6 show that EVAF-Net achieves exceptional discrimination capability on
both datasets. For the DeepFake Detection dataset, the curve rises sharply toward the top-left corner with an
AUC of 1.000, indicating perfect separation between real and manipulated samples. Similarly, the Stable
Diffusion dataset demonstrates the same ideal performance, with the ROC curve almost hugging the top
boundary and achieving an AUC of 1.000 as well. The near-vertical ascent of both curves reflects extremely low
false-positive rates and very high true-positive rates. Overall, these results confirm that EVAF-Net is highly
effective and reliable in distinguishing authentic content from both deepfake and AI-generated images.

Generalization score

Table 4: Test and External Validation Accuracy of EVAF-Net on Two Datasets

Dataset Test Accuracy (%) External Accuracy (%)
DeepFake Detection Dataset 97.8 96.0
Stable Diffusion Generated 95.3 93.0
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In Table 4 results show that EVAF-Net maintains strong generalization across both datasets. On the DeepFake
Detection dataset, the model achieves 97.8% test accuracy and a solid 96.0% external accuracy, indicating
reliable performance on unseen data. For the Stable Diffusion dataset, the model performs consistently with
95.3% test accuracy and 93.0% external accuracy, reflecting good robustness even when evaluated outside
the training distribution. Overall, the model demonstrates stable and dependable classification capability across
diverse generative sources.

Figure 8: Comparison of Test Accuracy and External Accuracy for EVAF-Net on Two Datasets

The figure 8 illustrates how EVAF-Net performs when evaluated on both internal test data and external unseen
data. For the DeepFake Detection dataset, the model shows high reliability with 97.8% test accuracy and
96.0% external accuracy, indicating strong generalization. On the Stable Diffusion dataset, although the
accuracies slightly decrease to 95.3% and 93.0%, the performance remains consistently strong. The downward
trend between test and external accuracy in both datasets reflects natural performance drop when exposed to
new distributions. Overall, the plot demonstrates that EVAF-Net maintains robust and dependable detection
capability across varied generative image sources.

Case 2: Xception Self-Attention U-Net Classifier (XSA-UNet)

Table 6: Classification Performance of XSA-UNet on DeepFake and Stable Diffusion Datasets

Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

AUC–ROC

DeepFake Detection Dataset 98.4 98.1 98.7 98.40 9.96
Stable Diffusion Generated
Images

96.5 96.0 96.9 96.45 9.83

The results in Table 6 show that XSA-UNet delivers highly accurate and consistent performance across both
datasets. For the DeepFake Detection dataset, the model achieves an impressive 98.4% accuracy, with strong
precision and recall values, indicating its ability to correctly identify both fake and real samples with minimal
errors. The AUC-ROC score of 0.996 further confirms excellent class separability and robust detection
capability. For the Stable Diffusion dataset, the model also performs strongly, achieving 96.5% accuracy and
balanced precision–recall values, reflecting reliable generalization to AI-generated images. Although slightly
lower than the DeepFake dataset, the performance remains consistently high, supported by an AUC-ROC of
0.983. Overall, XSA-UNet demonstrates powerful and stable classification performance across diverse synthetic
media sources.
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Figure 9: Confusion matrix for DeepFake
Detection Dataset (XSA-UNet)

Figure 10: Confusion matrix for Stable Diffusion
Generated Image Dataset (XSA-UNet)

The two confusion matrices illustrate the performance of the XSA-UNet model in distinguishing real and AI-
generated images across two datasets. In Figure 9, for the DeepFake Detection Dataset, the model correctly
classifies 4,875 real images and 4,965 fake images, while misclassifying 85 real images as fake and 75 fake
images as real. This indicates a high overall accuracy and balanced performance between both classes. Similarly,
Figure 10 shows the model's results on the Stable Diffusion Generated Image Dataset, where 4,920 real images
and 4,935 fake images are correctly identified, with only 80 real and 65 fake images misclassified. Both
matrices demonstrate that XSA-UNet achieves strong generalization and low misclassification rates across
datasets with distinct generative sources. The small number of misclassifications highlights the model's
robustness in capturing subtle differences between real and synthetic images, confirming its effectiveness for
digital forensics and content authentication applications. Overall, these results validate the model’s ability to
maintain high precision and recall, supporting its potential for real-world deployment in detecting AI-generated
content.

Figure 11: Performance Comparison of EVAF-Net on DeepFake Detection and Stable Diffusion Datasets

The Figure 11 illustrates the performance comparison of a detection model across two datasets: the DeepFake
Detection Dataset and Stable Diffusion Generated Images. For both datasets, the model demonstrates high
performance across all evaluation metrics, including Accuracy, Precision, Recall, F1-Score, and AUC-ROC.
Specifically, the DeepFake Detection Dataset shows slightly higher AUC-ROC (99.6%) and balanced metrics
around 98%, indicating excellent detection capability. The Stable Diffusion dataset has marginally lower scores,
with F1-Score at 96.45% and AUC-ROC at 98.3%, reflecting strong generalization to synthetic images. Overall,
the results indicate the model performs robustly on both real and AI-generated images, maintaining high
reliability across different metrics.

AUC–ROC
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Figure 12: AUC-ROC Curve for DeepFake
Detection Dataset (XSA-UNet)

Figure 13: AUC-ROC Curve for Stable
Diffusion Generated Images dataset (XSA-

UNet)

The ROC curves compare the detection performance of the XSA-UNet model on two datasets: DeepFake and
Stable Diffusion–generated images. In Figure 12, the DeepFake dataset achieves a higher AUC of 0.801,
indicating stronger discrimination between real and fake images. In contrast, Figure 13 shows a slightly lower
AUC of 0.755 for Stable Diffusion images, suggesting that diffusion-based fakes are comparatively harder to
classify. Overall, both curves show good true-positive rates across increasing false-positive rates, demonstrating
reliable generalization of the model across different generative sources.

Generalization score

Table 7: Test and External Validation Accuracy of XSA-UNet on Two Datasets

Dataset Test Accuracy (%) External Accuracy (%)
DeepFake Detection Dataset 98.4 97.8
Stable Diffusion Generated Images 96.5 95.6

Table 7compares how well the XSA-UNet model performs on two different datasets using both test accuracy
and external validation accuracy. For the DeepFake Detection Dataset, the model achieves very high
performance with a test accuracy of 98.4% and an external accuracy of 97.8%, showing strong generalization
even on unseen data. For the Stable Diffusion Generated Images dataset, the test accuracy is 96.5% and the
external accuracy is 95.6%, which is slightly lower but still indicates reliable detection capability. Overall, the
results demonstrate that XSA-UNet is highly effective across both GAN-based and diffusion-based fake images,
with only minor performance drops when evaluated on external datasets.

Figure 14: Comparison of Test Accuracy and External Accuracy for XSA-UNet on Two Datasets
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Figure 14 compares how the XSA-UNet model performs on two different datasets: DeepFake images and Stable
Diffusion–generated images. The red line represents test accuracy, while the blue line represents external
validation accuracy. Both lines start higher for the DeepFake dataset (98.4% and 97.8%) and decline for the
Stable Diffusion dataset (96.5% and 95.6%), indicating that diffusion-based fakes are slightly more challenging
to detect. The consistent gap between test and external accuracy also shows how the model maintains strong
generalization on unseen data. Overall, the graph highlights that while performance decreases slightly across
datasets, XSA-UNet remains highly reliable for detecting both types of synthetic images.

Table 8: Comparison of High-Accuracy Deepfake and Synthetic Image Detection Models

Reference Method / Model Accuracy (%)
[17] Transfer Learning CNN + LSTM 96%
[21] CNN-LSTM + Vision Transformer 96%
[16] CNN-LSTM Hybrid 96%
[25] CNN + LSTM with Optical Flow 97%
[19] CNN-LSTM Facial Deepfake Detection 97%
Proposed work EVAF-Net 97.88
Proposed work XSA-UNet 98.4

The table 8 compares the performance of several state-of-the-art deepfake detection methods with the proposed
EVAF-Net and XSA-UNet models. Traditional hybrid approaches such as CNN-LSTM and Transformer-based
models achieve strong accuracies ranging between 96% and 97%, reflecting their effectiveness in capturing both
spatial and temporal artifacts. Methods using optical flow and facial-region enhancement show slightly higher
accuracy at around 97%. In contrast, the proposed models demonstrate superior performance: EVAF-Net
reaches 97.88%, outperforming existing architectures, while XSA-UNet achieves the highest accuracy at
98.4%, indicating stronger generalization and better detection of both GAN-based and diffusion-based synthetic
images.

Conclusion and Future Work

This study presents a comprehensive and robust deep learning framework for detecting real and AI-generated
images across diverse generative models, including GANs, autoencoders, and diffusion-based architectures. By
integrating multi-generator datasets such as the DeepFake Detection Dataset and Stable Diffusion synthetic
images, the research addresses one of the major limitations in existing detection systems poor generalization to
unseen generators. The two proposed models, EVAF-Net and XSA-UNet, demonstrate that combining CNN
backbones with multi-scale feature extraction, attention mechanisms, and transformer-based global reasoning
significantly enhances the model’s ability to capture both subtle textures and high-level structural
inconsistencies present in synthetic images.Experimental results confirm high performance across all evaluation
metrics, with both architectures achieving strong accuracy, precision–recall balance, and near-perfect AUC–
ROC values. EVAF-Net shows excellent robustness, achieving 97.8% and 95.3% accuracy on the DeepFake and
Stable Diffusion datasets respectively, while XSA-UNet further improves performance with 98.4% and 96.5%
accuracy. Cross-dataset external validation reinforces the generalization capability of the proposed models, with
only minor performance drops when exposed to unseen generative distributions. This demonstrates that the
integration of multi-scale features, attention refinement, and hybrid CNN–Transformer design effectively
mitigates generator-specific bias. Future work may focus on expanding cross-domain datasets, exploring
lightweight architectures for real-time deployment, and improving interpretability of detection decisions.
Additionally, future research could investigate adaptive learning strategies to automatically update the models
against emerging generative techniques, and explore multimodal detection approaches combining audio, video,
and text for more comprehensive media authentication. This research contributes an important step toward
universal and future-proof detectors capable of adapting to rapidly evolving AI-generated media.
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