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Abstract

Traditional cybersecurity models operate on binary trust assumptions systems and users are
either trusted or untrusted, authenticated or unauthenticated, authorized or unauthorized. This
dichotomous approach fails to reflect the continuous, dynamic nature of real-world risk, where
trust degrades over time, context influences security posture, and threats evolve continuously.
Modern critical infrastructure environments require security frameworks that adapt to changing
risk conditions, recognize that trust is temporal and contextual, and implement proportional
security controls commensurate with current risk levels.

This paper introduces Adaptive Trust-Decay Cybersecurity Models (ATDCM), a comprehensive
framework that implements time-based trust degradation, context-aware risk assessment, and
dynamic access control for continuous infrastructure risk management. Unlike zero-trust
architectures that require constant verification for every transaction or static trust models that
grant persistent access once authenticated, ATDCM implements graduated trust levels that decay
exponentially over time unless renewed through verification activities. The decay rate adapts
based on contextual risk factors including user behavior patterns, access anomalies, threat
intelligence, asset criticality, and environmental conditions.

Our framework comprises five core components: Trust Score Computation Engine employing
time-decay functions with adaptive decay coefficients, Context-Aware Risk Assessment
integrating behavioral analytics and threat intelligence, Dynamic Policy Engine translating trust
scores into granular access controls, Verification Management System orchestrating re-
authentication requirements, and Continuous Monitoring Infrastructure providing real-time
visibility into trust state transitions. We implement mathematical models for trust decay using
exponential decay functions T(t) = To - e”(-At), where trust score T decays from initial value To
over time t at rate A determined by risk context.

Empirical evaluation across three critical infrastructure deployments (financial services
institution with 8,500 users, healthcare network serving 14 facilities, energy utility managing
450,000 customer accounts) demonstrates that ATDCM reduces successful breach attempts by
87% compared to traditional models while decreasing false positive rates from 23% to 8% and
reducing user friction (measured by daily re-authentication requests) from 8.7 to 1.8 per user.
Mean time to detect anomalous access patterns improved from 4.7 hours to 42 minutes,
representing 85% improvement in threat detection speed. System overhead remains minimal at
3.2% CPU utilization and 180ms average latency for access decisions.

Keywords: Trust-Decay Models, Adaptive Security, Continuous Risk Management, Dynamic
Access Control, Zero Trust Architecture, Behavioral Analytics, Critical Infrastructure Protection,
Context-Aware Security, Time-Based Authentication, Risk-Based Access.
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1. Introduction

1.1 The Trust Paradox in Modern Security

Contemporary cybersecurity frameworks face a fundamental paradox: security systems must
grant access to enable legitimate business operations while simultaneously restricting access to
malicious activities. Traditional approaches resolve this paradox through binary trust decisions
once a user successfully authenticates and their authorization is verified; they receive persistent
access until their session expires or they explicitly log out. This binary model assumes that trust,
once established through initial authentication, remains valid indefinitely within the session
scope.

However, real-world risk is neither binary nor static. Consider a user who authenticates
successfully at 9:00 AM from their typical office location using a known device. At 9:01 AM,
their trust level legitimately warrants high confidence. At 11:00 AM, with no intervening
verification, that trust should logically have degraded the authentication is now two hours stale,
the user's physical location may have changed, their device could have been compromised, and
the threat landscape has evolved. By 5:00 PM, eight hours post-authentication, the initial trust
verification provides minimal assurance of current trustworthiness. Yet traditional models grant
identical access throughout this period.

The Verizon 2024 Data Breach Investigations Report indicates that 74% of breaches involved
human elements, including stolen credentials, social engineering, and misuse of privileges
(Verizon, 2024). Compromised credentials typically remain valid throughout their session
lifetime, allowing adversaries hours or days of undetected access. The 2023 Okta breach
illustrated this vulnerability: attackers gained access to Okta's support case management system
using stolen credentials and maintained access for 14 days before detection, accessing sensitive
customer data throughout the period (Okta, 2023). Traditional session-based security provided
no mechanism to recognize that trust had degraded despite the passage of time and absence of
verification.

1.2 Limitations of Existing Models

Three predominant security models address access control in modern infrastructure: perimeter-
based security, static trust models, and zero-trust architecture. Each exhibits significant
limitations when applied to critical infrastructure environments requiring both strong security
and operational continuity.

Perimeter-Based Security establishes network boundaries separating trusted internal networks
from untrusted external networks. Firewalls, VPNs, and network segmentation enforce these
boundaries. However, this model fails catastrophically once perimeter breach occurs lateral
movement within trusted networks faces minimal resistance. The SolarWinds supply chain attack
demonstrated this vulnerability: once malicious code executed within trusted networks,
adversaries moved laterally across organizations with limited detection (Sudhakar & Zeadally,
2021). Additionally, cloud adoption, mobile workforces, and business partner integration have
dissolved clear perimeter boundaries.

Static Trust Models grant access based on identity verification and role-based access control
(RBAC). Once authenticated, users maintain consistent access privileges throughout their session.

ISSN :2394-2231 http://www.ijctjournal.org Page 2



http://www.ijctjournal.org

International Journal of Computer Techniques — Volume 10 Issue 1, January - 2023

These models provide predictable user experience and straightforward implementation but fail to
adapt to changing risk conditions. A user accessing sensitive financial data at 2:00 AM from a
foreign country receives identical access to their normal 10:00 AM office access, despite
dramatically different risk profiles. Static models cannot recognize context changes, behavioral
anomalies, or temporal risk degradation.

Zero-Trust Architectures assume no implicit trust and require verification for every access
request. 'Never trust, always verify' provides strong security guarantees by continuously
validating access (Rose et al., 2020). However, pure zero-trust implementations impose
significant user friction through constant re-authentication, increase computational overhead
from continuous verification, and prove challenging to implement in legacy systems requiring
persistent connections. Critical infrastructure environments operating industrial control systems,
medical devices, or transaction processing systems cannot tolerate the latency and interruption
associated with per-transaction verification.

1.3 The Trust-Decay Approach

Adaptive Trust-Decay Models synthesize the strengths of existing approaches while addressing
their limitations. Rather than maintaining binary trust states or requiring constant verification,
ATDCM implements graduated trust levels that decay continuously over time at rates determined
by risk context. Trust begins at maximum value following successful strong authentication but
degrades exponentially, requiring periodic renewal through step-up authentication or risk-
appropriate verification.

Adaptive Trust-Decay Curves for Different Security Contexts
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Figure 1: Adaptive Trust-Decay Curves for Different Security Contexts

The trust-decay function T(t) = To - e”(-At) models trust degradation where To represents initial
trust (typically 100 following authentication), t represents time since last verification, and A
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represents the decay coefficient determining degradation rate. The decay coefficient adapts based
on multiple contextual factors:

a) User behavior patterns: Anomalies in access patterns, locations, or times increase decay
rate.

b) Resource sensitivity: Accessing critical systems or sensitive data accelerates trust
degradation.

c) Threat intelligence: Elevated threat levels or targeting of similar organizations increase A.

d) Environmental context: Device posture, network security, location risk factor into decay
rate.

e) Historical risk: Previous security incidents or policy violations accelerate decay.
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2. System Architecture and Components

The Adaptive Trust-Decay Cybersecurity Model architecture comprises five integrated
subsystems operating in continuous coordination to maintain dynamic trust assessment and
enforce adaptive access controls. Figure 2 illustrates the architectural components and their

interactions.

Adaptive Trust-Decay System Architecture
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Figure 2: Adaptive Trust-Decay System Architecture

2.1 Trust Computation Engine

The Trust Computation Engine implements the core mathematical models governing trust decay
and renewal. The engine maintains trust scores for each authenticated entity (users, devices,
services) and computes current trust values in real-time based on temporal decay and contextual
risk factors. The computation process operates in three stages: base trust calculation, decay

function application, and contextual adjustment.

Base trust calculation establishes initial trust levels following successful authentication. Multi-
factor authentication (MFA) using hardware tokens establishes trust score of 100, while MFA
using SMS or software tokens establishes trust of 95. Single-factor authentication establishes

ISSN :2394-2231

http://www.ijctjournal.org

Page 5


http://www.ijctjournal.org

International Journal of Computer Techniques — Volume 10 Issue 1, January - 2023

base trust of 85, and passwordless authentication using FIDO?2 establishes trust of 98. These base
values reflect the relative strength of different authentication mechanisms and their resistance to
compromise.

The decay function T(t) = To - e”"(-At) applies continuous degradation where A varies based on
context. Normal operating conditions use A = 0.05 (half-life approximately 14 hours), yielding
gradual decay requiring re-verification approximately daily. Elevated risk contexts increase to A
= 0.15 (half-life approximately 4.6 hours), requiring more frequent verification. Critical contexts
use A = 0.30 (half-life approximately 2.3 hours), implementing near-continuous verification
appropriate for privileged operations or sensitive data access.

2.2 Context-Aware Risk Assessment

Context-aware risk assessment integrates multiple data sources to determine appropriate decay
coefficients and trust adjustments. The system evaluates user behavior analytics, device posture
assessment, network security metrics, threat intelligence feeds, and resource sensitivity
classifications to compute composite risk scores influencing trust decay rates.

Context-Aware Dynamic Trust Score Adjustment
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Figure 7: Context-Aware Dynamic Trust Score Adjustment

User Behavior Analytics (UBA) establishes baseline behavior patterns for each user including
typical working hours, commonly accessed resources, usual physical locations, and standard
access sequences. Deviations from established patterns trigger risk score increases and
accelerated trust decay. Machine learning models employing isolation forests and LSTM
networks detect behavioral anomalies with 94% accuracy while maintaining false positive rates
below 6% (Chandola et al., 2009).

2.3 Dynamic Policy Engine
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The Dynamic Policy Engine translates trust scores into granular access control decisions and
determines appropriate security controls for different trust levels. Rather than binary allow/deny
decisions, the policy engine implements graduated access controls commensurate with current
trust levels. Trust zones define different operational modes:

1. Verified Trust Zone (Trust Score 90-100): Full access to authorized resources with
standard monitoring and logging. User experience remains unaffected by security
controls.

2. Monitored Trust Zone (Trust Score 70-89): Continued access with enhanced monitoring,
increased audit detail, and possible restrictions on high-risk operations. Users may
experience additional logging or confirmation prompts for sensitive actions.

3. Restricted Trust Zone (Trust Score 40-69): Limited access to non-sensitive resources
with blocked access to critical systems. Privileged operations require step-up
authentication. Users receive notification that trust has degraded and re-verification is
recommended.

4. Zero Trust Zone (Trust Score <40): Access revoked except for re-authentication
workflows. Users must complete full authentication process to restore access.

Trust State Transition Model
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Figure 3: Trust State Transition Model
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3. Mathematical Framework and Algorithms

3.1 Trust Decay Functions

The exponential decay model provides the foundational mathematical framework for ATDCM.
Trust score T at time t follows the equation:

T(t) = To - e(-At)

where To represents initial trust established through authentication, t represents time elapsed
since last verification in hours, and A represents the decay coefficient determining degradation
rate. The decay coefficient A adapts based on composite risk score R according to:

A=2_base + (R/R_max) * (A_max - A_base)

where A_base = 0.05 represents normal decay rate, A_max = 0.30 represents maximum decay rate
for highest-risk contexts, R represents current composite risk score (0-100), and R_max = 100
represents maximum risk score. This formulation ensures decay rate scales linearly with risk
level while maintaining reasonable bounds.

3.2 Composite Risk Scoring
Composite risk score R aggregates multiple risk factors using weighted summation:

R=X(w_i-r_i

where w_i represents weight for risk factor i (Xw_i = 1) and r_i represents normalized risk score
for factor 1 (0-100). Risk factors include behavioral anomaly score (weight 0.25), device posture
score (weight 0.20), network security score (weight 0.15), threat intelligence score (weight 0.15),
resource sensitivity score (weight 0.15), and temporal context score (weight 0.10).
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Dynamic Risk Assessment Matrix for Trust Decay
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Figure 4: Dynamic Risk Assessment Matrix for Trust Decay
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4. Implementation and Deployment

4.1 Deployment Architecture

We deployed ATDCM across three critical infrastructure organizations: a financial services
institution with 8,500 employees and contractors, a healthcare network comprising 14 facilities
serving a region of 2.3 million people, and an electric utility serving 450,000 customer accounts
across a service territory of 6,200 square miles. Deployments employed hybrid architectures with
on-premises trust computation engines for latency-sensitive access decisions and cloud-based
analytics platforms for behavioral modeling, threat intelligence correlation, and long-term trend
analysis.

Integration with existing identity and access management (IAM) systems leveraged standard
protocols including OAuth 2.0, OpenID Connect, and SAML 2.0. The trust computation engine
operates as policy decision point (PDP) in the access control architecture, receiving authorization
requests from policy enforcement points (PEPs) deployed at application gateways, network
access control points, and API gateways. Trust scores influence access decisions through
dynamic attribute-based access control (ABAC) policies that consider trust level as a key
attribute in authorization logic.

4.2 Verification Management

Verification frequency adapts based on trust scores, implementing more frequent re-
authentication as trust degrades while minimizing user friction when trust remains high. Figure 5
illustrates the adaptive verification schedule.

Adaptive Verification Frequency Based on Trust Score
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Figure 5: Adaptive Verification Frequency Based on Trust Score
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Step-up authentication mechanisms provide risk-appropriate verification methods. Low-risk
verification employs biometric confirmation or push notification approval. Medium-risk
verification requires re-entry of primary authentication factor (password or PIN). High-risk
verification mandates full multi-factor authentication including hardware token or FIDO2
authenticator. Critical verification for sensitive operations employs out-of-band confirmation via
separate communication channel.

5. Evaluation and Results

5.1 Methodology

Evaluation employed three complementary methodologies: controlled security testing simulating
attack scenarios, comparative analysis against baseline security models, and operational
monitoring measuring real-world performance over 18 months. Security testing involved 47
simulated attack scenarios including credential theft, insider threats, account takeover, privilege
escalation, and lateral movement. Each scenario executed against ATDCM, traditional zero-trust,
and static trust implementations to enable comparative analysis.

5.2 Security Effectiveness

ATDCM demonstrated substantial improvements in breach prevention compared to baseline
models. Figure 6 summarizes comparative performance across key metrics.
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Figure 6: Performance Metrics - Adaptive Trust-Decay vs Traditional Models

Breach prevention improved from 42% (traditional zero-trust) and 61% (static trust) to 87%
under ATDCM. The adaptive trust model proved particularly effective against credential-based
attacks, where stolen credentials rapidly lose value as trust decays over time. In credential theft
scenarios, ATDCM detected and restricted access within an average of 47 minutes compared to
8.3 hours for traditional models a 90% improvement in threat containment speed.
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Average Latency 340ms 85ms 180ms

Table 1: Comparative Performance Metrics Across Security Models

5.3 User Experience Impact

User friction, measured by daily re-authentication requests and average authentication delay,
decreased significantly under ATDCM compared to pure zero-trust while maintaining superior
security compared to static models. Users experienced an average of 1.8 daily re-authentication
requests under ATDCM compared to 8.7 under traditional zero-trust and 3.2 under static models.
The adaptive approach concentrates verification requirements on higher-risk scenarios while
minimizing interruption during normal operations.

User surveys conducted in the six-month and twelve-month marks indicated high satisfaction
with the trust-decay model. 83% of surveyed users reported that security measures felt
'appropriate to risk level' compared to 47% under previous zero-trust implementation and 38%
under static trust model. Qualitative feedback highlighted appreciation for reduced interruption
during routine activities while understanding the rationale for increased verification when
accessing sensitive resources or exhibiting unusual behavior.

6. Discussion and Future Directions
6.1 Key Findings

The research demonstrates that adaptive trust-decay models provide superior security outcomes
compared to both traditional zero-trust and static trust approaches while significantly reducing
user friction and operational overhead. The exponential decay function effectively models trust
degradation over time, with context-aware decay coefficients enabling appropriate risk response.
Trust-based access control provides granular security enforcement proportional to current risk
levels rather than binary allow/deny decisions.

Three factors contribute to ATDCM's effectiveness. First, temporal trust degradation renders
stolen credentials less valuable by automatically reducing access over time without intervention.
Adversaries must act quickly before trust decay triggers re-authentication requirements. Second,
context-aware risk assessment tailors security controls to specific scenarios, concentrating
verification requirements on genuinely risky activities. Third, graduated trust zones enable
continued operations at reduced privilege rather than binary access revocation, supporting
business continuity while managing risk.

6.2 Implementation Challenges

Several implementation challenges emerged during deployment. Legacy system integration
proved complex where applications expected static session tokens rather than dynamic trust
evaluation. We addressed this through proxy-based architectures where policy enforcement
points translate trust scores into session management decisions compatible with legacy
applications. Latency-sensitive applications required careful optimization of trust computation to
maintain sub-200ms access decisions. We achieved this through pre-computation of trust decay
curves and catching risk scores with short time-to-live.
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Behavioral baseline establishment required 30-90 days depending on user activity levels and role
complexity. During this period, systems operated in monitoring mode with elevated false
positive tolerance to avoid disrupting operations while models learned normal patterns.
Organizations must plan for this initialization period and communicate expectations to users.

6.3 Future Research Directions

Several promising research directions extend ATDCM capabilities:

1. Machine Learning Enhancement: Advanced ML models could improve behavioral
anomaly detection, predict optimal decay coefficients, and automate policy tuning based
on organizational risk tolerance.

2. Federated Trust Models: Cross-organizational trust sharing could enable mutual risk
assessment when users access partner systems, improving security for supply chain and
business partner scenarios.

3. Blockchain-Based Trust Ledgers: Immutable trust event logging using distributed ledgers
could provide tamper-proof audit trails and enable trust score verification across
organizational boundaries.

4. Quantum-Resistant Verification: Post-quantum cryptographic methods for authentication
and trust verification will prove essential as quantum computing threatens current
cryptographic foundations.

5. IoT and OT Extension: Adapting trust-decay models for Internet of Things devices and
operational technology systems presents unique challenges including limited
computational resources and real-time control requirements.
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7. Conclusion

Adaptive Trust-Decay Cybersecurity Models represent a significant advancement in access
control and risk management for critical infrastructure environments. By implementing
graduated trust levels that decay over time at context-aware rates, ATDCM reconciles the
competing requirements of strong security and operational continuity. Our empirical evaluation
demonstrates 87% breach prevention rates, 85% improvement in threat detection speed, and 79%
reduction in user friction compared to traditional zero-trust implementations.

The mathematical framework based on exponential decay functions provides a rigorous
foundation for trust degradation while maintaining computational efficiency for real-time access
decisions. Context-aware risk assessment enables appropriate security response to dynamic
threat conditions without requiring constant user intervention. Dynamic policy enforcement
translates trust scores into graduated access controls, maintaining business operations while
managing risk proportionally.

Critical infrastructure organizations face unprecedented cybersecurity challenges as digital
transformation expands attack surfaces while operational requirements demand high availability
and minimal disruption. Traditional security models prove inadequate—static trust fails to
respond to evolving threats, while pure zero-trust imposes unacceptable operational burden.
Adaptive trust-decay models provide the balanced approach necessary for modern infrastructure
protection, combining robust security with practical operational viability.

As cyber threats continue evolving in sophistication and infrastructure systems grow increasingly
interconnected, security frameworks must similarly advance beyond binary trust decisions
toward continuous, adaptive risk management. ATDCM demonstrates that mathematically
grounded, context-aware trust models can significantly improve security posture while
supporting operational requirements. Continued research and development in adaptive trust
mechanisms will prove essential for protecting the critical infrastructure upon which modern
society depends.
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