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Abstract—This  research  presents a  mathematical
methodology for designing software delays with cycle-accurate
precision for AVR-based Arduino systems, using assembly
language programming. Through analysis of AVR instruction
timing at the machine level, precise mathematical models are
developed that translate timing requirements into exact assembly
instruction sequences. The approach eliminates compiler
optimization uncertainties and provides deterministic timing
control with nanosecond precision. The methodology addresses
critical applications requiring exact timing, where hardware
timers are unavailable and C-level abstractions introduce timing
variability. Mathematical equations are derived that account for
every instruction cycle, enabling precise delay generation within
+1 clock cycle across the ATmega328P operational range.
Validation through oscilloscope measurements and cycle-
accurate simulation confirms timing precision with 62.5
nanosecond resolution at 16 MHz operation.

Keywords— Assembly language, AVR microcontrollers, cycle-
accurate timing, mathematical modeling, embedded systems,
software delay, blocking delays, Arduino.

1. INTRODUCTION

Modern embedded applications increasingly demand
precise timing control that exceeds the capabilities of high-
level language implementations. While C-based Arduino
programming offers accessibility and rapid prototyping,
abstraction layers and compiler optimizations introduce timing
uncertainties that are unacceptable for applications requiring
nanosecond-level precision [1][2].

Assembly language programming provides direct control
over instruction execution, enabling exact, cycle-by-cycle
timing predictions. In AVR microcontrollers, each assembly
instruction has a defined execution time, making mathematical
modeling of delays both practical and precise. This research
presents a systematic approach for designing assembly-level
delay routines with mathematical precision.

Unlike previous work focusing on high-level delay
implementations [3][4], the presented methodology operates at
the instruction level, providing deterministic timing regardless
of compiler settings or optimization levels. Building upon
mathematical modeling techniques for embedded delays [5][6],
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these concepts have been adapted specifically for AVR
assembly programming.

The primary contributions of this work include:
development of exact cycle mathematical models for AVR
assembly instructions, systematic methodology for converting
timing requirements into assembly code, comprehensive
validation of timing precision, and practical implementation
techniques for Arduino development environments.

A. Advantages of Assembly-Level Timing
Assembly language offers several critical advantages for
precision timing:

e Deterministic execution: Each instruction has known
cycle count.

e Compiler independence: No optimization uncertainties.

e Cycle-level control: Direct manipulation of instruction
timing.

e Maximum efficiency: Minimal overhead and maximum

precision.

These advantages make Assembly the optimal choice for
applications requiring exact timing control, such as custom
communication protocols, sensor interfacing, and real-time
signal generation.

II. AVR ASSEMBLY, ARCHITECTURE AND TIMING ANALYSIS

A. ATmega328P Instruction Set Timing

The ATmega328P employs a RISC architecture where most
instructions execute in a single clock cycle [7]. Critical timing
characteristics include:

e Arithmetic/Logic Instructions: ADD, SUB, AND, OR,
INC, DEC (1 cycle)

e Branch/Call Instructions: RJMP (2 cycles), JMP
(3 cycles), CALL, RET (4 cycles)

e Conditional Branch Instructions: BRNE, BREQ, BRMI
(1 cycle if not taken, 2 cycles if taken)
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e Data Transfer Instructions: LDI (1 cycle), LD, ST
(2 cycles)

Operating at 16 MHz, each cycle represents exactly 62.5
nanoseconds ( =1/ ), providing the fundamental timing
resolution.

B. Assembly Delay Algorithm Structure

Fig. 1 shows a program for turning an LED on and off,
known as blinking LED. The flowchart refers to the delay
function, which is developed in Fig. 2 and analyzed in
assembler in point c.

~LedPin.
Delay

Assignments:

RO=0Q
R1=P
R2=R

LedPin
LED on D3

Fig. 1. Flow diagram of the Blinking LED program, which includes a delay
call routine.

Figure 2 shows a structure consisting of three nested loops.
The first loop uses register R23 and decrements the variable Q
until it equals zero. The second loop uses register R24 and
decrements the variable P until it equals zero. The third and
final loop uses register R25 and decrements the variable R until
it equals zero. In all cases, when the condition is not equal to
zero, the algorithm repeats from the decrement of R23 until it
returns to zero, executing 256 cycles for each decrement of
R24. A similar process occurs with R25: if it is not zero, it
returns to R23 from 0 to 0 for each decrement of R24. If R24 is

https://ijctjournal.org/

zero, the process of decrementing from 0 to O is repeated,
resulting in an increase in cycles and prolonged delays.

;*************** Delay Algorlthm sk ok sk sk ok ok sk skoskoskosk skok ko

delay:
; Input parameters: R23=Q, R24=P, R25=R
; Initialize values

LDIR23,Q ;Q — R23 (1 cycle)
LDIR24,P ;P — R24 (1 cycle)
LDIR25,R ;R — R25 (1 cycle)

loop:
DEC R23 ; Decrement Q (1 cycle)
BRNE loop ; Jump if not zero (2/1 cycles)
DEC R24 ; Decrement P (1 cycle)
BRNE loop ; Jump if not zero (2/1 cycles)
DEC R25 ; Decrement R (1 cycle)
BRNE loop ; Jump if not zero (2/1 cycles)
RET ; Return (4 cycles)

+ el sl e s s e st sfe st s ke ke e s s s st st st stk ke s e s s st sttt sk ke s s s s stk stk ke kokok
b
Fig. 2. Assembly language delay algorithm for AVR architecture.

C. Cycle-by-Cycle Mathematical Analysis

Through detailed instruction analysis, the exact cycle count
for each loop level is derived:

1) Constant Loading Analysis (Q, P, R):
e LDIR23,Q: 1 cycle=(1)cycle
e LDIR24,P: 1cycle=(1)cycle
e LDIR25,R: 1 cycle =(1) cycle
e Total: TK1 = (1+1+1) cycles = (3) cycles

2) R23 Loop Analysis (Q iterations).
DEC R23: 1 cycle x (Q) times = (Q) cycles
e BRNE loop: 2 cycles x (Q-1) times +
1 cycle x (Q-(Q-1)) times = (2Q-1) cycles
e Total: TQ = (Q) cycles + (2Q-1)
=(3Q- 1) cycles

cycles

3) R24 Loop Analysis (P iterations):

e DEC R24: 1 cycle x (P) times = (P) cycles

e Inner loop with R23 =0 .. Q = 256: (3(256) - 1)
cycles X (P-1) times = 767 X (P-1) cycles

e BRNE loop: 2 cycles x (P-1)
1 cycle x (P-(P-1)) times = (2P-1) cycles

e Total: TP = (P) cycles + [767x(P-1) cycles]
+ (2P-1) cycles = (770P - 768) cycles

times +

4) R25 Loop Analysis (R iterations):
e DECR25: 1 cycle x (R) times = (R) cycles
e Inner loop with R23 =0, R24 =0 .. Q = 256,
P =256: [TQ + TP] X (R-1) cycles
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e BRNE loop: 2 cycles x (R-1) times +
1 cycle x (R-(R-1)) times = (2R-1) cycles
e Total: TR = (R) cycles + [197119%x(R-1) cycles] +

(2R-1) cycles = (197122R - 197120) cycles
5) Function Exit Analysis:
e RET: 4 cycles = (4) cycles
e Total: TK2 = (4) cycles

The total cycles of the complete algorithm are obtained by
adding the partial cycles, as shown in (1):

=] 1+ + + + 2] (1

Substituting the obtained values in (1):

=[83+@3 —1)+ (770 —768)+
(197122 —197120) + 4] 2)
Simplifying (2):
=[3 +770 +197122 —197882] 3)

The equation is defined in cycles or oscillator periods, but it
can be adjusted to any operating frequency. Remember that (a
period is the inverse of the frequency, T=1/f). For example, the
typical operating frequency in Arduino (ATmega328P) is 16
MHz, so one cycle or period is equal to (1/16 MHz) or 62.5 ns.
so (3) is adjusted to operate in time, replacing cycles with the
equivalent in time (4):

625
[-] x

=[3 +770 +197122
“4)

—197882] x 62.5

From (4), the minimum ( ) and maximum ( )
times provided by the function are determined. The time
is obtained by considering that Q, P, and R have a value of 1,
resulting in (5). Similarly, is calculated by considering
that Q, P, and R are equal to 0 or their equivalent 256,
obtaining (6). The complete range of time ( ) generated
by the function is spresented in (7).

=[3(1) + 770(1) + 197122(1) — 197882] x 62.5

=(13) x625 =8125 )
= [3(256) + 770(256) + 197122(256) — 197882]
x 625
= 50,463,238 x 625 = 3,153,952,375 (6)
8125 < < 3,153,952,375 )
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From above, it follows that: 1 < =<256,1< <256,
1< < 256. Itis important to remember that the value 256 is
equivalent to assigning a “0” to registers R23, R24, and R25.
The range of these values is due to the size of the system
registers, which is 8 bits.

III. MATHEMATICAL MODEL AND SOLUTION METHOD

A. Equation Solution Methodology

Next, we solve (4) to express the desired time on the left
side of the equation, obtaining (8). The result is called the
Target Time ( ), from which two expressions are derived:
the first defines the Target Time constant (9), and the second
simplifies the equation to determine its solution (10).

=(3 +770 +197122 —197882) (8)

62.5

= (&) ©)

=3 +770 +197122 —197882  (10)

From equation (10), the expressions needed to calculate the
values of Q, P, and R are obtained.

Step 1: It can be seen that the greatest contribution to time
comes from the variable R due to its dominant coefficient. For
this reason, it is considered that the variables Q and P do not
make a significant contribution, thus generating an equation to
determine the value of R.

Consequently, in (10) it is assumed that Q = 0 and P = 0,
obtaining (11).
=3(0) +770(0) + 197122 —197882 (11)

Solving (11) to obtain the value of R, gives (12):

+197882
_( 197122 ) (12)

At this point, it is important to recall the notation used to
represent the set of REAL numbers (R)[8], as shown in (13).

=[ 1+{ 3} (13)
Where [W] represents the integer part of a real number and
{W} its fractional part.

Therefore, it is established from (12) that only the integer
value [R] is required, as shown in (14).

_ +197882
L1 = l 197122 J (14)
Step 2: The value found for [R] is replaced and =0 is

considered, since it is the variable that contributes least to (10).
With this substitution, it is possible to calculate the value of [P]

(15).
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3(0) +770( )+ 197122[ ]—197882

= 197122 ] —770( ) —197882 (15)
Solving (15) gives (16):
+197882-197122] |
[1= s | (16)

Step 3: With the values obtained from [R] and [P],
substitute them into (10) to determine [Q] (17):

=3( )+ 770[ ]+197122[ ] — 197882 (17)

Solving (17) gives (18):

+197882—-197122[ 1-770[ |

1= 3 (18)

Step 4: 4) Once the equations for calculating [ ], [ ], and
[ ] have been obtained, it is possible to determine the
coefficients for any value within the range defined in (7).
However, as discussed in [5], a brief analysis of the fractional
part { } is still required in order to allow for fine adjustments
and improve the accuracy of the algorithm. For the AVR
architecture, it should be noted that the coefficient Q is equal to
3 in (10); therefore, the possible results in { } are:

If {Q} = 0, the routine is exact.
If {Q} = 0.33333, the routine needs one cycle and will
compensate with one NOP before exiting.

o If {Q} = 0.6666, the routine needs two cycles and will
compensate with two NOPs before exiting.

B. Optimization

When precise timing requires cycle adjustment, fine tuning
is implemented using the NOP instruction for one cycle.
Therefore, depending on the result obtained in {Q}, the NOP
instructions located before the “return” instruction are
selectively commented out or not (Fig. 3).

https://ijctjournal.org/

o sfeste sk sk sk sfe sk skeseoske skeskesk skesk Delay Algorlthm skeosk sk skeoske sk sk sk seskeoske skeskok
delay:

; Input parameters: R23=Q, R24=P, R25=R

; Initialize values

LDIR23,Q ;Q — R23 (1 cycle)
LDI R24, P ; P— R24 (1 cycle)
LDIR25,R ;R — R25 (1 cycle)

loop:
DEC R23 ; Decrement Q (1 cycle)
BRNE loop ; Jump if not zero (2/1 cycles)
DEC R24 ; Decrement P (1 cycle)
BRNE loop ; Jump if not zero (2/1 cycles)
DEC R25 ; Decrement R (1 cycle)
BRNE loop ; Jump if not zero (2/1 cycles)
NOP ;1 NOP for {Q} =0.33
NOP ;2 NOP for {Q} = 0.66

RET ; Return (4 cycles)

o 3k sk s sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk skesk sk sk sk sk sk sk skesk sk sk skesk sk sk skeok ksl ko sk skok
>

Fig. 3. Compensated delay algorithm in assembly language for AVR
architecture.

C. Validation

Table 1 presents the coefficient calculations (R, P, Q) for
different time bases ( ) within the range established in (7).
It indicates the number of calculated cycles that will be
executed in the routine, showing that in all cases there is no
error in the calculation, thanks to the compensations described
in the previous point with respect to {Q} and including the
NOPs added according to the established time. These
coefficients were verified by simulation to check their accuracy,
finding the expected accuracy in all cases.

TABLEI. TIMING VALIDATION RESULTS
(ASSEMBLY IMPLEMENTATION)
Error
Total Time Parameters Calculated M d Aggregate
. easure )
(,us) (R,P,Q) Cycles NOPs
(ns)

1 (1,1,2) 16 0 0
1,000 (1,21,196) 16x103 0 2
5,000 (1,7,123) 80x10? 0 1
50,000 (5,15,240) 800x10° 0 2

100,000 (9,30,228) 1.6x10° 0 0
500,000 (41,150,126) 8x10° 0 2
1,000,000 (82,43,256) 16x10° 0 0
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IV. IMPLEMENTATION AND INTEGRATION

A. Arduino IDE Integration

Assembly routines can be integrated with Arduino C/C++
code using inline assembly as illustrated in Figure 3.

The code executes a routine known as "Blinking LED" or
"Flashing LED" on Arduino's terminal D3 [9], managing a
50% duty cycle for taking two delay readings on the same
terminal, validated through oscilloscope measurements.

This routine uses a synchronization of 1 second per period,
where the coefficients R, P, and Q match the value in Table 1.
Note that if any variable in the formula results in 256, it should
be taken as 0 for the registers in assembler, since the
decrements will be from 0 to 0, executing 256 cycles.

This information enables implementing libraries (delay.h)
with functions capable of handling ps or ms, calculating
coefficients based on established time without user intervention
building functions such as:

i

e precise_delay ms(unsigned long int time);

e precise delay us(unsigned long int time);

1) Validation Methodology

Hardware Configuration:

e Arduino Uno (ATmega328P with 16 MHz crystal)
e Oscilloscope for cycle measurement

The C/C++ code shows the loop used to turn the LED on
and off at terminal D3 (Fig. 4), establishing this terminal as
oscilloscope input for sampling, validating previously
calculated coefficients (Fig 5).

https://ijctjournal.org/
// C/C++ code

const int ledPin = 3; // LED in D3
void setup()

pinMode(ledPin, OUTPUT);
}

void loop()

{
digitalWrite(ledPin, HIGH);
delay asm(126, 150, 41);
digitalWrite(ledPin, LOW);
delay asm(126, 150, 41);

}

// Wait for 500 ms

// Wait for 500 ms

void delay asm(uint8 t Q, uint8 t P, uint8 tR)
{
asm volatile
(
"loopl: \n\t"
"dec %0 \n\t"
"brne loop1 \n'\t"
"dec %1 \n\t"
"brne loop1 \n'\t"
"dec %2 \n\t"
"brne loop1 \n\t"
"nop \n\t"
"nop \n\t"
2"+ (Q), """ (P), "+ (R) // modified registers
: // no additional registers
);
}

Fig. 4. Delay algorithm in
implemented in Arduino.

assembly language, compensated and

CH1

1VOLT/DIV

500 MS/DIV

Fig. 5. Oscilloscope validation of timing precision showing an exact 1
second period with 500 ms ON/OFF cycles, measured on a Tektronics
TBS1064 oscilloscope set to 1 V/div and 500 ms/div; data extracted from the
CSV file exported by the oscilloscope.
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V. APPLICATIONS AND PERFOMANCE ANALY SIS

A. Critical Timing Applications

Serial communications via hardware is an application that
invariably presents slippage or synchronization errors. This is
due to the implementation of hardware synchronization bases
for a wide spectrum of transmission speeds, resulting in error
rates that can be high or low, with rare cases of 0. A notable
advantage of a routine such as the one presented is its ability to
discern imperceptible errors (Fig. 6).

;**************** Serial COIIlmunication sk sk sk st sk st ke sfeoske skeskeoske skoskesk sk
uart_send_bit:

; Send start bit

CBI PORTD, 1 ; Data line low

CALL delay

; Send data bits...

SBRC R16, 0 ; Skip if bit is clear
SBI PORTD, 1 ; Data line high
CALL delay asm

; Continue for remaining bits

delay:
; 104 cycles = 6.5us (153.6kbps)
LDI R23, 31
LDIR24,1
LDIR25,1

PR
« sfesk sk st ok ok sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk sk sk skesk skt skeosk skt skeok skskokok
>

Fig. 6. Software Serial Communication.

;**************** Sensor COHlmunication stesfe sfe st ke sfe sfe sfesfe she sfe sfeskeskesfe s

dht22 start signal:
; Set data line low for exactly 1ms
CBI PORTC, 0 ; Data low
CALL delayl

; Set high for 30ps
SBI PORTC, 0 ; Data high
CALL delay2
delayl:
LDI R23, 196 ; Calculated for 1000us
LDI R24, 21
LDI R25, 1
delay2:
LDI R23, 156 ; Calculated for 30us

LDI R24, 1
LDI R25, 1

seee
« sfesk sk s sk ok sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skesk sk sk skesk skt skeok skt skeok skeskeokok
>

Fig. 7. Sensor Interface Timing.
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The communication process with sensors can be intricate in
scenarios where acquiring data rapidly is challenging. This
complexity may arise following device enablement or during
communication protocols such as 12C or SPI (Fig. 7).

B. Performance Comparison

In light of the critical applications delineated in the
preceding section, a series of tests were devised. These tests
compared delays provided in the integrated libraries of the
Arduino platform with delays presented in this document [10].
The tests evaluated temporal precision, code inversion ratio in
these functions, ability to predict results based on stipulated
times, and additional code added by the platforms to prepare
routines (overhead). The results of these tests are shown in
Table 2.

TABLE II. ASSEMBLY VS HIGH-LEVEL LANGUAGE
PERFORMANCE
X Timing Code Predictability CPU
Implementation . .
Precision Size Overhead
Arduino delay () 1000 ns Small Poor High
delayMicroseconds() 250 ns Small Moderate High
Nested C loops 125 ns Medium Compiler Medium
dependent

Assembly 62.5 ns Msgjlﬁﬂilb Excellent Minimal

- Assembly Code
b. Assembly Code into C/C++
C. Assembly Implementation Advantages
Deterministic Execution:
e Known cycle count at assembly time

e No compiler optimization variables
e Consistent timing across different compilations

Maximum Efficiency:

e Direct register use minimizes memory access
e  Optimized instruction sequences reduce overhead
e Fine granular control over every cycle

Predictable Behavior:

e Timing independent of compiler settings
e Consistent performance across AVR variants
e Reliable operation under all conditions

VI. ADVANCED FEATURES AND EXTENSIONS

A. Dynamic Implementation
Ideally, the programmer only needs to specify the time
required for the function as an input parameter. For example:

delay_ms(500);
This functionality can be implemented as a .h/.c controller

within the work platform to facilitate the programmer's use of
the function(s) derived from this research.
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B. Interrupt-Safe Implementation

Fig. 8 illustrates how to implement delay routines with
interrupt protection. This prevents the interrupt handling
process from altering the timing of the algorithm.

- Sfesfe sfe sfe sk she sfe sfe sk sfe sfe sfe sk sk sfe sfeskeske e s
s

Atomic Delay

s sk sk sk sk sk sk sk sk sk ok ok skosk sk skskosksk ok
atomic_precision_delay:
CLI ; Disable interrupts
CALL delay
SEI ; Re-enable interrupts
RET

sl R R R R R R s R s R sk R s R s R s R s s s s s sl e s ek ook
b
Fig. 8. Interrupt-safe delay implementation

VII. CONCLUSIONS AND FUTURE WORK

This research  demonstrates that  assembly-level
programming provides maximum precision for timing-critical
embedded applications. The mathematical modeling approach
enables exact delays with cycle precision and nanosecond
resolution, eliminating uncertainties inherent in high-level
language implementations.

Key achievements include:

o Perfect timing precision: +0 cycle deviation under
controlled conditions.

e Deterministic execution: Consistent timing regardless
of compiler or optimization.

e Mathematical precision: Exact calculation of

parameter for any timing requirement.

e Practical implementation: Seamless integration with
Arduino development environment.

The assembly language approach trades development
complexity for timing precision, making it ideal for
applications where exact timing is critical. While C-based
implementations offer easier development, assembly language
provides unmatched timing control.

Future research directions include:
e Extension to other AVR microcontroller families

e Integration with real-time operating systems
e Automatic assembly code generation tools for timing

routines

e Temperature compensation for crystal frequency
variations

e  Multicore timing synchronization for advanced AVR
devices.

https://ijctjournal.org/

Limitations and considerations:

e Increased development complexity compared to
high-level languages

e Platflorm-specific
assembly)

e Larger code size for complex timing sequences

e Requirement for assembly language expertise

implementation (Arduino/AVR

The methodology provides a solid foundation for
applications requiring deterministic timing, such as industrial
automation and scientific instrumentation, where precision is
critical.
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