‘et
.International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

CoursePlate: Personalized Restaurant
Recommendation System

First Author et al., International Journal of Computer Science and Mobile Computing Vol. 3, December-20
25,pg. 14

"Donggwan Kwon, 2Sunghoon Jeon, *Seungmin Lee, “Jaecyoung Yeom, *Seungjae Lee
123.45Computer Engineering, Sunmoon university, Korea

1d0926@naver.com, 2kkrjbh123456@naver.com, *sml0801@sunmoon.ac.kr, *duawodud12@naver.com, +'1
eeko@sunmoon.ac.kr(Corresponding Author)

Abstract

This paper presents a personalized restaurant recommendation system, CoursePlate, leveraging open-sou
rce tools and APIs, including React Native, Expo, MongoDB, and Naver Maps API.  The system provide
s real-time personalized food recommendations based on user preferences and location, offering an intuitiv
e user interface and seamless navigation experience. The integration of Naver Maps API allows for easy loc
ation-based services, while the receipt verification system ensures the credibility of user reviews, preventin
g fraudulent ones and improving trust in the platform.

Keywords
Open Source, Restaurant Recommendation, Naver Maps API, React Native, MongoDB

I. Introduction

In today's world, personalized recommendation systems have become a cornerstone of modern applications,

especially in the food service industry. Our project, CoursePlate, aims to develop a solution that personaliz
es restaurant recommendations for users based on their preferences and locations. This system integrates se
veral open-source tools and APIs, including Expo, React Native, Naver Maps API, and MongoDB, to deliv
er a seamless user experience for food exploration and navigation [1, 2, 3].

I1. Related Work

Several systems have attempted to personalize restaurant recommendations. For instance, DiningCode and
Tripadvisor offer restaurant suggestions based on reviews and ratings[4].

Table 1. Comparison with Existing Services (DININGCODE)

Feature CoursePlate DININGCODE
Recommendation Metho . . |Recommendation based on user reviews and rati
d Recommendation after user survey analysis ngs
Recommendation Criteri/Considers user food preferences and time of d _ .
a ay Popular restaurants and visitor ratings

ISSN :2394-2231 http://www.ijctjournal.org Page 154



https://ijctjournal.org/
http://www.ijctjournal.org

‘et
.International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025

Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

Table 2. Comparison with Existing Services (Tripadvisor)

Feature CoursePlate Tripadvisor
Recommendation Metho . . |Recommendation based on user reviews and rati
d Recommendation after user survey analysis
ngs

Recommendation Criteri|Considers user food preferences and time of d| .. .
Popular restaurants and visitor ratings

a ay

However, these systems do not incorporate user preferences or real-time location data to offer truly persona
lized experiences[5]. Our approach utilizes Al-driven recommendations and location-based navigation, enh
anced by real-time data from Naver Maps APL

II1. System Architecture
The architecture of the CoursePlate system is composed of the following major components:
- Frontend (Mobile App): Developed using React Native for cross-platform compatibility, leveraging Expo
for a streamlined development process.
- Backend: Built using Spring Boot, Flask and MongoDB to handle user data, restaurant information, and re
commendation logic[6].
- Open API Integration: Uses Naver Maps API for real-time location services and restaurant navigation[7].

IV. Open Source and Tools Used

1. Expo (Open Source)

- Purpose: We used Expo for mobile app development as it provides a powerful framework for building Re
act Native applications. It simplifies the process by offering tools for rapid development, testing, and deplo
yment.

- Contribution: Expo was essential in setting up the Bare Workflow for integrating Naver Maps API, which
is a native module requiring non-managed project settings.

2. React Native (Open Source)

- Purpose: React Native enables us to write native applications using JavaScript and React. It supports build
ing apps for both iOS and Android with a single codebase, making it ideal for our cross-platform applicatio
n development[8].

- Contribution: With React Native, we developed the user interface and managed state across the app, integ
rating location services and recommendation algorithms.

3. Naver Maps API (Open API)

- Purpose: The Naver Maps API is used to display real-time maps, restaurant locations, and enable navigati
on features[9].

- Contribution: By integrating Naver Maps API, we provided users with an interactive map to explore reco
mmended restaurants and access real-time navigation to their destinations.

4. MongoDB (Open Source)

- Purpose: MongoDB was used as the primary database to store user preferences, restaurant data, and reco
mmendation results[10].

- Contribution: With MongoDB, we can efficiently store and retrieve large datasets in a document-oriented
structure, ideal for handling diverse restaurant data and user information.

ISSN :2394-2231 http://www.ijctjournal.org Page 155



https://ijctjournal.org/
http://www.ijctjournal.org

‘et
.International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025

Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/
5. CoolSMS (API Service)

- Purpose: CoolSMS was used to implement SMS-based features such as user verification and notification
[10].

- Contribution: By integrating CoolSMS, we enabled the system to send verification codes during registrati
on and provide users with real-time SMS alerts, enhancing user engagement and security.

6. Spring Boot (Open Source)

-Purpose: Spring Boot was used to build the backend REST API that handles user authentication, data proc
essing, and business logic[11].

- Contribution: With Spring Boot, we developed a scalable and efficient server-side architecture that integra
tes seamlessly with MongoDB and external APIs such as CoolSMS.

7. Flask (Open Source)

-exposes the /analyzeREST endpoint for sentiment scoring and keyword extraction[12].

V. Research Results of Technology Development
1. App Development Results
e User Authentication and Registration

o Functionality: We implemented email/password-based user registration and login features. The system
uses JWT (JSON Web Tokens) for handling authentication and token renewal, ensuring secure access to
the application.

o State Management: The system stores session data in AsyncStorage. The token is retained during the s
ession, and upon app restart, users are prompted to log in again.

2. Expo Bare Workflow Transition & Naver Maps API Integration
e Expo to Bare Workflow Transition

o Functionality: In order to integrate native modules such as Naver Maps API, the Expo Managed Work
flowwas transitioned to a Bare Workflow. This allowed us to fully utilize the native functionality require
d for handling map features and geolocation services.

o Implementation Details: After transitioning to the Bare Workflow, we integrated the ‘@mj-studio/reac
t-native-naver-map’ module, which allowed us to display the map and use navigation features directly wi
thin the React Native environment.

3. Location-Based Restaurant Recommendation and Mapping
e Real-Time Restaurant Markers on the Map

o Functionality: The system uses Naver Maps APIto display markers for recommended restaurants base
d on user preferences and location. Each restaurant’s coordinates (latitude and longitude) are used to plac
e markers on the map dynamically.

ISSN :2394-2231 http://www.ijctjournal.org Page 156



https://ijctjournal.org/
http://www.ijctjournal.org

vIICT
.International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025
Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

o Marker Interaction: When a user selects a restaurant from the list, the map automatically zooms in to t
hat restaurant’s location, highlighting the marker. This allows for a more engaging user experience, wher

e the user can explore food options and navigate easily.

o Implementation Details: We used the animateCameraTo()function to move the map view to the selecte
d restaurant and highlighted the marker in a distinct color to indicate the user's selection.

<« CoursePlat

.

s

<Fig. 1>: Restaurant markers on the map with highlighted selection.

4. Receipt Verification Review System

e Functionality: We implemented a receipt verification systemto ensure that only legitimate reviews are wr
itten. After selecting a restaurant and using the "Get Directions" feature, users have a 48-hour window to w
rite a review after providing a valid receipt image.

o Review Eligibility: The system checks if the user has uploaded the receipt and only allows reviews for
users who have valid receipts within the 48-hour period.

o Backend Integration: The server stores review eligibility data, including the restaurant name, address,
and the time of receipt upload. This system ensures that reviews are only written by actual customers, in
creasing the reliability and trustworthiness of the information provided on the platform.

<« < CoursePlate

EEIERS

AL ETH

S 0L A

<Fig. 2>: receipt verification

ISSN :2394-2231 http://www.ijctjournal.org Page 157



https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025

Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

5. Dark/Light Mode and Local Caching

e Dark and Light Mode Management

o Functionality: We implemented a dynamic theme systemthat allows users to switch between dark and 1
ight modes based on their preferences. The useTheme()hook manages the theme state, and it is applied gl
obally across the app to ensure consistency in UI elements.

o Local Data Caching: Using AsyncStorage, the app stores essential data like user preferences, region, a
nd previously visited locations offline, allowing the system to function without constant network access.
When the network is available again, the app synchronizes with the backend to ensure data consistency.

oA S 98%0 B X e 98%0

€ CoursePlate
43

tage

<Fig. 3>: Ul showing theme switching between dark and light modes.

6. Explanation of Figures:

Fig. 1: The restaurant map markersimage shows how restaurants are displayed on the map with interactiv
e markers that highlight when selected.

Fig. 2: The receipt verification figure depicts how receipts are verified before users can submit a review.

Fig. 3: The theme management Ulillustrates how the app supports dark and light modes for improved us
er experience.

7. Al Server (Flask) Implementation

Your aiserver/directory provides a complete pipeline for review analysis:

-main.py

Exposes a single POST endpoint (/analyze) that accepts JSON

ISSN :2394-2231 http://www.ijctjournal.org Page 158



https://ijctjournal.org/
http://www.ijctjournal.org

‘et
.International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025

Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/
Delegates analysis to review_analyzer.analyze text()and returns a JSON response.
-review_analyzer.py
analyze text(text: str):

1. Vectorizes input via the TF—IDF model.

2. Runs the sentiment classifier to produce positive/negative.

3. Applies simple frequency-based keyword extraction from preprocessed tokens.

4. Returns a tuple (sentiment_label, confidence score, keyword_list).

-utils.py

Implements preprocessing steps (lowercasing, re-based tokenization, stop-word filtering)
Serializes the tuple into JSON with keys "sentiment", "score", and "keywords".

Outcome:
— A self-contained Flask service that, given any review text, produces a sentiment label, confidence score,
and list of extracted keywords in a single round-trip call.

8. Backend Local Search Service (Spring Boot)
Your NaverLocalSearchServiceclass delivers restaurant data from Naver’s Open API:
-Configuration injection
@Value("${naver.client-id}")  private String clientld;
@Value("${naver.client-secret}") private String clientSecret;
-searchRestaurants(String query, String location)
1. Constructs the URL
"https://openapi.naver.com/v1/search/local.json?query="

+ URLEncoder.encode(query + " " + location, UTF_8)

+ "&display=10&start=1&sort=random"
2. Opens HttpURLConnection, sets headers:
con.setRequestProperty("X-Naver-Client-1d", clientld);
con.setRequestProperty("X-Naver-Client-Secret”, clientSecret);
3. Reads the response stream into a JsonNodevia Jackson’s ObjectMapper.
4. Maps each item to your Restaurantentity, populating fields:

_title, address, roadAddress

ISSN :2394-2231 http://www.ijctjournal.org Page 159



https://ijctjournal.org/
http://www.ijctjournal.org

‘et
.International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025

Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/
_telephone, category, link
_Geocoordinates mapx, mapy.
-Persistence & Filtering
(Commented in code) Restaurants can be saved via a RestaurantRepository.
Returned List<Restaurant>is ready for downstream filtering by Al-extracted keywords.

Outcome:
— A Spring service that reliably fetches up to 10 location-based restaurant entries per query, fully configur
ed via properties and ready to integrate with your Al server outputs.

VI. Methodology

We implemented a machine learning-based recommendation system using user survey data and restaurant
metadata. The system:

- Collects user preferences through a survey.

- Analyzes these preferences and returns a list of recommended restaurants.

- Integrates with Naver Maps API to provide real-time navigation to the recommended restaurants.
Additionally, we built an authentication and review system that uses receipt verification to ensure the authe
nticity of user reviews, preventing fraudulent reviews and increasing the credibility of the system.

VII. Results and Discussion
Our system successfully integrates user preferences with location data to offer personalized restaurant reco
mmendations. The Naver Maps API integration allows for seamless navigation to the recommended locatio
ns. By implementing receipt verification for reviews, we ensured that only legitimate reviews are presented,
boosting the trustworthiness of the information.

VIII. Conclusion
The CoursePlate application, powered by open-source tools like React Native and Naver Maps API, offers
a user-friendly and efficient platform for food exploration. The integration of personalized recommendation
s, real-time navigation, and reliable review systems has the potential to significantly enhance the dining exp
erience. Future work will involve expanding the system’s capabilities to include more dynamic data sources
and further improve recommendation accuracy.

ACKNOWLEDGEMENT

This research was supported by the MSIT(Ministry of Science ICT), Korea, under the National Program
for Excellence in SW, supervised by the IITP(Institute of Information & Communications Technology
Planning & Evaluation) in 2025"(No. 2024-0-00023).

References

[1] Smith, ], & Johnson, A. (2023). Leveraging Real-time Location Data for Enhanced Personalized Re
commendations. Journal of Mobile Applications, 8(2), 112-125.

[2] Chen, L., & Wang, M. (2022). The Role of Open Source Technologies in Developing Smart City Appl

ISSN :2394-2231 http://www.ijctjournal.org Page 160


https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques—IJCT Volume 12 Issue 6, November 2025

Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/
ications. International Conference on Smart Systems and Technologies, 45-50.

[3] Gupta, R., & Sharma, K. (2021). User Experience Design in Mobile Recommendation Systems: A Co
mprehensive Review. Journal of Human-Computer Interaction, 15(4), 289-302.

[4] Kim, Y., & Lee, S. (2020). Analyzing User Reviews and Ratings for Restaurant Recommendation: A
Comparative Study. Journal of Big Data Analytics, 7(1), 55-68.

[5] Brown, P., & Davis, M. (2024). Challenges in Incorporating Real-time User Preferences in Recomm
endation Algorithms. Conference on Artificial Intelligence and User Behavior, 88-95.

[6] Patel, S., & Singh, V. (2023). Microservices Architecture for Scalable Recommendation Systems usi
ng Spring Boot and MongoDB. International Journal of Software Engineering, 10(3), 201-215.

[7] Choi, H., & Park, J. (2022). Integration of Geospatial APIs in Location-Based Services: A Case Study
with Naver Maps. Journal of Geographic Information Science, 25(1), 10-23.

[8] Garcia, L., & Rodriguez, F. (2021). Cross-Platform Mobile Development with React Native: Benefits
and Best Practices. Mobile Computing and Applications, 18(2), 145-158.

[9] Lee, K., & Kim, M. (2023). Dynamic Map Rendering and Navigation Features in Location-Based Mo
bile Applications. Journal of Digital Cartography, 6(1), 77-89.

[10] Zhao, X., & Li, H. (2022). NoSQL Databases for Handling Large-Scale User Preference Data in Rec
ommendation Engines. Database Management Journal, 14(4), 310-324.

[11] Wang, Y., & Liu, C. (2024). Developing Robust RESTful APIs for Recommendation Systems using
Spring Boot. International Journal of Web Services Research, 21(1), 30-45.

[12] Miller, A., & Taylor, B. (2023). Machine Learning Approaches for Personalized Content Recomme
ndation: A Survey. Al and Data Science Review, 5(3), 160-175.

ISSN :2394-2231 http://www.ijctjournal.org Page 161



https://ijctjournal.org/
http://www.ijctjournal.org

	Abstract
	Keywords
	I. Introduction
	II. Related Work
	III. System Architecture
	IV. Open Source and Tools Used
	VI. Methodology
	VII. Results and Discussion
	VIII. Conclusion

