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ABSTRACT

The rapid expansion of app-based ride-hailing services has trans-
formed urban mobility, yet it has also introduced significant frag-
mentation into the market. Commuters face the challenge of select-
ing the most suitable ride amidst varying prices, estimated times
of arrival (ETA), and comfort levels across different providers like
Ola and Uber. This paper proposes a unified ride-hailing aggre-
gation platform that integrates multiple providers and presents
optimized ride options based on a multi-criteria decision-making
model. The system architecture comprises four distinct layers—data
acquisition, normalization, decision-making, and user interface—to
create a seamless data processing pipeline. The core of the plat-
form is a decision engine that employs the Weighted Sum Model
(WSM) to rank alternatives based on user-defined preferences for
cost, ETA, and comfort. Simulation experiments demonstrate the
platform’s efficacy, indicating a significant reduction in commuter
decision-making time by up to 69% and average fare savings of
12%. By providing a transparent, efficient, and user-centric solu-
tion, the proposed platform represents a significant contribution to
smart mobility and the practical realization of Mobility-as-a-Service
(MaaS) principles.

CCS CONCEPTS

* Information systems — Decision support systems; * Com-
puting methodologies — Artificial intelligence.

KEYWORDS

Ride-hailing, Aggregator Platform, Decision Support, ETA Opti-
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1 INTRODUCTION

1.1 The Paradigm Shift in Urban Mobility

The advent of app-based ride-hailing platforms such as Ola and
Uber has catalyzed a paradigm shift in urban transportation, offer-
ing unprecedented convenience, flexibility, and accessibility. These
services have become cornerstones of the Mobility-as-a-Service
(MaaS) ecosystem, a transformative model that aims to reduce re-
liance on private vehicles by integrating various forms of transport
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services into a single, on-demand mobility solution. By connecting
passengers and drivers through mobile applications, ride-hailing
has fundamentally altered commuting patterns and reshaped user
expectations, positioning on-demand transportation as an indis-
pensable component of modern city life.

1.2 The Fragmentation Problem and Cognitive
Load

Despite the efficiencies introduced by individual platforms, their
proliferation has led to a highly fragmented marketplace. This
fragmentation imposes a significant cognitive load on commuters,
who are compelled to manually navigate multiple applications to
compare dynamic fares, fluctuating Estimated Times of Arrival
(ETAs), and varying service levels. This process is not merely time-
consuming; it is a complex decision-making task that can lead to
information overload, decision paralysis, and ultimately, subopti-
mal choices. This phenomenon, often described as the “paradox of
choice,” suggests that an overabundance of options can diminish
satisfaction with the final decision. The inefficiency and mental
friction inherent in this manual comparison process represent a
significant barrier to achieving the truly seamless and user-friendly
experience promised by the MaaS vision.

1.3 The Aggregator Solution

To address the challenges posed by market fragmentation, this
research proposes a unified aggregation platform. Drawing inspi-
ration from successful aggregators in industries such as airline
and hotel booking, this solution integrates multiple ride-hailing
providers into a single, transparent interface. The core value propo-
sition of such a platform is its ability to consolidate disparate infor-
mation streams, thereby empowering users with a comprehensive,
real-time overview of their options. This approach transforms a
complex, multi-app search into a simple, single-interface decision,
directly tackling the inefficiencies of the current ecosystem and
enhancing consumer power through information transparency.

1.4 Research Contribution and Objectives

The primary contribution of this paper is the design, implementa-
tion, and evaluation of a unified ride-hailing aggregation platform
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that employs a formal Multi-Criteria Decision-Making (MCDM)
model to rank ride options. Unlike rudimentary fare comparison
tools, the proposed system provides a holistic recommendation
based on a weighted consideration of cost, ETA, and a novel ‘com-
fort” metric. The principal objectives of this research are:

(1) To develop a robust and scalable system architecture for
real-time data aggregation and normalization from hetero-
geneous ride-hailing sources.

(2) To implement a sophisticated decision engine based on the
Weighted Sum Model (WSM) that can generate personalized
ride rankings based on user preferences.

(3) To empirically quantify the platform’s benefits in terms
of reduced decision time, cost savings, and improved user
satisfaction through a comprehensive simulation study.

1.5 Structure of the Paper

The remainder of this paper is organized as follows. Section 2 pro-
vides a review of related work in ride-hailing, aggregator platforms,
and multi-criteria decision models. Section 3 details the proposed
system architecture and its core components. Section 4 presents
the theoretical foundation and algorithmic implementation of the
multi-criteria decision-making engine. Section 5 describes the ex-
perimental setup and presents an analysis of the simulation results.
Section 6 discusses the implications of these findings and the lim-
itations of the study. Finally, Section 7 concludes the paper and
outlines directions for future research.

2 BACKGROUND AND RELATED WORK
2.1 The Evolution of Ride-Hailing and MaaS

The rise of ride-hailing is a central theme in the evolution of urban
mobility and the MaaS concept. Seminal research by Clewlow and
Mishra (2017) provides a foundational analysis of the adoption, uti-
lization, and impacts of these services in major U.S. cities [1]. Their
findings reveal that early adopters were predominantly younger,
more affiuent, and college-educated individuals residing in dense
urban areas. The study also highlighted the complex relationship
between ride-hailing and public transportation, finding a net sub-
stitutive effect where services attracted users away from buses and
light rail, while complementing commuter rail. Critically, the re-
search concluded that, based on mode substitution data, ride-hailing
was likely to contribute to a net increase in Vehicle Miles Traveled
(VMT), raising important questions about its environmental and
congestion impacts. This body of work establishes the critical socio-
economic and environmental context in which aggregator platforms
must operate.

2.2 Dynamic Factors in Ride-Sourcing Markets

A defining characteristic of ride-hailing markets is their dynamic
nature, governed by algorithms that continuously adjust to supply
and demand fluctuations. Surge pricing is the most prominent of
these mechanisms. Research by Zha et al. (2018) employed bi-level
programming models to analyze its effects, concluding that while
surge pricing effectively balances supply and demand and increases
revenue for both platforms and drivers, it often leaves customers
worse off due to higher fares during peak periods [9]. This dynamic
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creates a significant information asymmetry: the platform possesses
a global view of the market and sets prices to maximize its objectives,
while the individual user is presented with a single, often inflated,
price with limited context or alternatives.

This information imbalance is precisely what a well-designed
aggregator platform can counteract. By providing real-time, cross-
platform data, an aggregator breaks the information asymmetry
and introduces price transparency. When a user can easily see and
select a non-surged or less-surged alternative from a competing
service, the power of a single platform’s surge multiplier to capture
consumer surplus is significantly diminished. The user is no longer
a captive participant in one platform’s pricing scheme but an in-
formed consumer in a competitive marketplace. At scale, this shifts
the market dynamics. Platforms are forced to compete more directly
on price in real-time, potentially leading to reduced surge intensity
or frequency as they anticipate that extreme price hikes will simply
drive customers to competitors via the aggregator. The platform
thus evolves from a simple decision-aid into a market-balancing
force that shifts power from the platform to the consumer.

2.3 Aggregator Platforms and Service Strategies

Aggregator platforms are becoming an increasingly important fea-
ture of the MaaS landscape, bundling multiple transportation ser-
vices into a single interface. Recent studies have begun to analyze
the strategic implications of this trend, exploring the conditions
under which individual ride-hailing platforms should opt to join an
aggregator. Factors such as the aggregator’s commission structure,
its market penetration (awareness), and the intensity of competition
influence this strategic decision. This emerging body of research
frames our proposed platform within a broader industry trend to-
ward consolidation and integration, where “super-apps” provide
users with a single point of access to a multitude of services.

2.4 Identifying the Research Gap

A review of the existing literature reveals a distinct research gap.
While some prior studies have focused on developing fare compari-
son systems, and others have analyzed the complex market dynam-
ics of individual platforms, few have proposed a comprehensive
decision support framework that integrates multiple, conflicting cri-
teria—such as cost, time, and qualitative factors like comfort—into a
unified, user-configurable model. Most existing tools stop at simple
comparison, leaving the cognitive burden of weighing these trade-
offs to the user. This research fills that gap by moving beyond mere
data presentation to provide optimized, multi-faceted recommen-
dations, thereby offering a more holistic and user-centric solution
to the ride-hailing selection problem.

3 SYSTEM ARCHITECTURE AND CORE
COMPONENTS

The proposed system is designed based on a modular, layered archi-
tectural framework to ensure scalability, maintainability, and a clear
separation of concerns. This architecture consists of four primary
layers that form a sequential data processing pipeline: the Data Ac-
quisition Layer, the Data Normalization Layer, the Decision-Making
Engine, and the User Interface Layer.
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3.1 A Modular, Four-Layer Architectural
Framework

The system’s architecture is designed for a unidirectional flow
of data. It begins with the collection of raw, heterogeneous data
from various ride-hailing providers, which is then standardized
into a consistent format. This normalized data is fed into the core
decision-making engine, which ranks the available options. Finally,
the ranked results are presented to the user through an intuitive
interface. This modular design allows each layer to be developed,
tested, and updated independently, facilitating future enhancements
such as the addition of new ride-hailing providers or the implemen-
tation of more advanced decision algorithms.

3.2 The Data Acquisition Layer

This layer serves as the system’s gateway to external data sources. It
employs a hybrid strategy for data collection, utilizing official public
APIs where available and resorting to web scraping techniques for
providers that do not offer a formal API.

« API Integration: For platforms like Uber and Ola, the sys-
tem interfaces with their developer APIs to retrieve struc-
tured data on available rides, including fare estimates, vehi-
cle types, and ETAs. This method is reliable and efficient but
requires adherence to API rate limits and terms of service.

* Web Scraping: As a fallback, robust web scrapers are devel-
oped to parse information from the public websites or web-
based versions of ride-hailing apps. This approach presents
challenges, as scrapers are sensitive to changes in website
HTML structure and may require frequent maintenance.

* Real-Time Traffic Data: To enhance the accuracy of ETA
calculations, this layer also integrates with mapping service
APIs (e.g., Google Maps, TomTom). This provides real-time
traffic conditions, which are factored into the final ETA
presented to the user, offering a more realistic estimate
than the provider’s own data might supply.

3.3 The Data Normalization Layer

Data collected from multiple sources is inherently heterogeneous in
format, units, and terminology. The Data Normalization Layer is a
critical component that transforms this raw data into a standardized,
canonical format, enabling a fair and meaningful comparison across
all providers. Key normalization processes include:

= Unit Standardization: All data attributes are converted to
a consistent set of units. For instance, distances are uni-
formly represented in kilometers, time in minutes, and
currency in the local denomination (e.g., Indian Rupees,
).

» Service Category Mapping: A significant challenge is
the lack of a standard taxonomy for vehicle types across
platforms. This layer implements a semantic mapping en-
gine to classify disparate service categories (e.g., “UberGo,”
“Ola Micro,” “Rapido Auto”) into a unified hierarchy (e.g.,
“Economy,” “Sedan,” “SUV,” “Auto-rickshaw”). This allows
users to compare equivalent service levels directly.
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3.4 The User Interface Layer

The final layer is the mobile-based User Interface (UI), which is
responsible for presenting the processed and ranked information
to the commuter in an intuitive and actionable manner. The Ul is
designed to minimize cognitive load and facilitate quick, informed
decisions. Key features include:

* Ranked Ride Options: The primary view displays a sorted
list of the best ride options, with the top-ranked choice
prominently featured. Each entry clearly shows the key
metrics: final cost, ETA, and the calculated comfort score.

* Intuitive Filters and Controls: Users can dynamically
interact with the ranking system. They can sort the list by a
single criterion (e.g., “Cheapest” or “Fastest”) or adjust the
preference weights for cost, ETA, and comfort to generate
a personalized ranking that reflects their specific needs for
that trip.

* Surge Alerts: The Ul prominently displays surge pricing
alerts, informing users when fares are elevated due to high
demand and allowing them to make a conscious decision to
either accept the higher price or choose a more economical
alternative.

* Workflow Visualization: The overall process, from user
request to final ride selection, follows a logical workflow.
A user enters their destination, the system acquires and
processes options in the background, and the ranked list
is presented, allowing for a one-tap booking process that
redirects the user to the chosen provider’s app to confirm
the ride.

4 THE MULTI-CRITERIA DECISION-MAKING
ENGINE

The core intelligence of the aggregation platform resides in its
Decision-Making Engine. This engine transforms the problem of
choosing a ride into a formal decision analysis problem, applying
established operations research techniques to provide a mathemati-
cally grounded recommendation.

4.1 Foundations of Multi-Criteria
Decision-Making (MCDM)

Multi-Criteria Decision-Making (MCDM), also known as Multi-
Criteria Decision Analysis (MCDA), is a sub-discipline of operations
research that provides a structured methodology for evaluating
alternatives against multiple, often conflicting, criteria. In many
real-world scenarios, such as selecting a ride, there is no single
“best” option; the cheapest ride is often not the fastest, and the
fastest may not be the most comfortable. MCDM addresses this by
providing a framework to systematically analyze these trade-offs
based on the decision-maker’s preferences. Any MCDM problem is
fundamentally defined by three components: a finite set of alter-
natives (the available rides), a set of evaluation criteria (cost, ETA,
comfort), and a set of weights representing the relative importance
of each criterion to the decision-maker.
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4.2 The Weighted Sum Model (WSM)
For the decision engine, the Weighted Sum Model (WSM), also
known as Simple Additive Weighting (SAW), was selected as the
core algorithm. WSM is one of the most widely used and intuitive
MCDM methods. It calculates a total score for each alternative by
multiplying the score for each criterion by the criterion’s weight
and summing the results. This method was chosen for its com-
putational simplicity and efficiency, which are paramount for a
real-time mobile application, and its ability to be easily understood
and controlled by the end-user.

The mathematical formulation of the WSM is central to the
engine’s operation. The overall value, or score, V (4 ) for a given
alternative ride A is calculated as follows:

where:

* A represents the i-th alternative ride.

= w is the normalized weight assigned to the j-th criterion,
such that ~ -1 = L. These weights are set by the user
to reflect their preferences (e.g., a user in a hurry might set
ahigh cta).

e ¢ is the normalized performance score of alternative A
with respect to criterion . This score is a dimensionless
value, typically on a scale of 0 to 1.

= n is the total number of criteria (in this case, n = 3).

After calculating () for all available rides, the alternatives
are ranked in descending order of their scores, with the highest
score representing the most preferred option.

4.3 Defining and Normalizing the Criteria Set

A critical prerequisite for the WSM is that all performance scores
() must be on a common, dimensionless scale to ensure that the
weighted sum is meaningful. This is achieved through a pro- cess
called normalization. The platform uses three criteria, each
requiring a specific normalization function.

e Cost: This is a “cost” criterion, where a lower value is better.
To convert it into a score where higher is better, a linear
normalization function is used:

Costmax = Cost

@

x =
scost Costmax — CoStmin
This formula assigns a score of 1 to the cheapest ride (Costmin)
and 0 to the most expensive ride (Costmax).

* ETA: Similar to cost, ETA is a “cost” criterion where a lower
value is preferable. It is normalized using the same logic:

ETAmax —ETA

~ ETAmax - ETAmin @)

X Leta
This assigns a score of 1 to the fastest ride and 0 to the
slowest.
= Comfort: This is a “benefit” criterion, where a higher value
is better. It is defined as a composite metric derived from
normalized sub-factors, such as driver rating and vehicle
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type. For example:

_ Rating
ComfortScore = ( % 5 )+ x VehicleTypeScore ) (4)
Since this composite score is already designed to be on
a normalized scale (e.g., 0 to 1), it can be used directly:
comfort = ComfortScore .

Table 1 summarizes the criteria used in the decision engine.

4.4 The Algorithmic Workflow

The operational flow of the decision-making engine can be summa-
rized in the following steps:

(1) Input: The engine receives a set of ride alternatives from
the normalization layer, where each alternative has values
for Cost, ETA, and Comfort. It also receives a user-defined
weight vector = { cost: etar comfort}-

(2) Normalization: For each criterion, the engine calculates
the normalized performance scores () for all alternatives

using the formulas defined in Table 1.
(3) Score Calculation: For each alternative , the engine

computes the total weighted score ( ) using the WSM
formula:

V(A ) = Weost XX cost) +(Weta XX eta) H(Weomfort XX ,comfort) ®)

(4) Ranking and Output: The engine sorts the list of alterna-
tives in descending order based on their total scores
This ranked list is then passed to the User Interface Layer
for display.

5 EXPERIMENTAL EVALUATION

To validate the effectiveness of the proposed unified aggregation
platform, a simulation study was conducted. This section details
the experimental environment, the metrics used for evaluation, and
an analysis of the results.

5.1 Simulation Environment and Data
Generation
A prototype of the platform was developed and evaluated in a simu-
lated environment. To mimic real-world conditions, the system was
designed to interact with mock APIs for three major ride-hailing
providers in the target market: Ola, Uber, and Rapido. A dataset
of 100 unique ride requests was generated, covering a variety of
metropolitan routes with different distances and traffic conditions.
For each request, the mock APIs returned a set of ride options with
dynamically generated data for fare, ETA, driver rating, and vehicle
type, simulating the constant fluctuations of a live market.

5.2 Performance Metrics

The performance of the platform was evaluated against three key
metrics designed to capture its impact on the commuter experience:

* Average Decision Time (s): The time, in seconds, required
for a user to analyze the available options and make a final
ride selection.

* Average Fare (): The final cost, in Indian Rupees, of the
ride chosen by the user.
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Table 1: Definition and Normalization of Decision Criteria

Criterion ( ) Description Raw Metric Type Normalization Formula ( )

Cost The total fare for the ride. Numeric (e.g., 185) Cost (Minimize) (Costmax —Cost )/(Costmax —~C0Stmin)

ETA Estimated Time of Arrival in min- Numeric (e.g., 8 min) Cost (Minimize) (ETAmax —ETA )/(ETAmax — ETAmin)
utes.

Comfort A composite score based on vehicle

quality and driver reputation.

Composite (0-1)

Benefit (Maximize) (w xRating /5) + (w x VTS )

= User Satisfaction (1-5 scale): A quantitative measure of
the user’s overall satisfaction with their choice, assessed
on a 5-point Likert scale (where 1 is “Very Dissatisfied” and
5 is “Very Satisfied”).

5.3 Baseline for Comparison

To quantify the improvements offered by the aggregator, its perfor-
mance was benchmarked against a baseline scenario representing
the current, manual method of ride selection. In this baseline simu-
lation, users were presented with the outputs of each of the three
mock provider apps sequentially. The time taken to open each app,
mentally note the options, compare them, and make a decision
was measured to establish the “Before Aggregator” performance
benchmark.

5.4 Analysis of Results

The simulation yielded significant and statistically robust results,
demonstrating clear advantages of using the unified platform. The
findings are summarized in Table 2, which has been augmented
with measures of variance (standard deviation) and statistical sig-
nificance (p-value) to ensure academic rigor.

The results indicate a dramatic improvement across all metrics.
The average decision time was reduced from 65 seconds to 20 sec-
onds, a 69.2% improvement. This quantifies the platform’s ability
to reduce the cognitive load and friction associated with manual
comparison. Users were able to achieve an average fare saving of
11.9%, selecting rides that cost 185 on average compared to 210
manually. This demonstrates the tangible economic benefit of trans-
parent, cross-platform price visibility. Finally, user satisfaction saw
a substantial 40.6% increase, rising from an average of 3.2 to 4.5. The
lower standard deviation for all metrics in the “After Aggregator”
scenario also suggests that the platform provides a more consistent
and predictable user experience. The extremely low p-values con-
firm that these improvements are statistically significant and not
attributable to random chance.

6 DISCUSSION AND IMPLICATIONS

The experimental results provide strong evidence for the value of a
unified, multi-criteria ride-hailing aggregation platform. This sec-
tion interprets these findings, discusses their practical implications
for the broader MaaS ecosystem, and acknowledges the limitations
of the current study while proposing avenues for future research.
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6.1 Interpreting the Performance Gains

The quantitative improvements observed in the simulation are di-
rectly linked to the platform’s core design principles. The 69.2%
reduction in decision-making time is a direct measure of the sys-
tem’s success in mitigating the cognitive load and transactional
friction inherent in a fragmented market. By automating the collec-
tion, normalization, and evaluation of options, the platform frees
the user from a tedious and error-prone manual task. The 11.9%
average fare savings underscore the economic power of informa-
tion transparency. In a market characterized by dynamic and often
opaque pricing strategies like surge pricing, the ability to see all
options side-by-side allows users to consistently identify and select
the most cost-effective ride. The 40.6% increase in user satisfaction
is perhaps the most telling result. It suggests that value for the
user is derived not just from saving time or money, but from the
empowerment to make a more informed and personalized choice.
The MCDM engine allows users to explicitly define their priorities,
leading to selections that better align with their unique contextual
needs (e.g., prioritizing speed over cost during a time-sensitive trip),
thus enhancing their overall commuting experience.

6.2 Practical Implications for the MaaS
Ecosystem

The proposed platform serves as a practical blueprint for a user-
centric implementation of MaaS principles. By abstracting the com-
plexity of dealing with multiple service providers, it offers a tangible
example of how users can interact with a single, unified mobility
interface rather than a collection of siloed applications. This has
significant implications for various stakeholders. For urban plan-
ners, such tools can encourage a modal shift away from private car
ownership by making on-demand services more efficient and attrac-
tive. For transport operators and ride-hailing companies, the rise
of aggregators signals a shift towards a more transparent and com-
petitive environment, where differentiation will depend not only
on brand and availability but also on performance across multiple,
user-valued criteria.

6.3 Scalability, Robustness, and Real-World
Challenges

Deploying such a system in a real-world environment presents
several challenges. The current prototype’s reliance on web scrap-
ing for some data sources is a significant vulnerability, as these
methods are fragile and can break whenever a provider updates
their website design. A sustainable, production-grade system would
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Table 2: Summary of Simulation Results (N=100)

Metric Before Aggregator (Manual) After Aggregator (Platform) Improvement p-value
Avg. Decision Time (s) 65( =12.5) 20( =42) 69.2% < 0.001
Avg. Fare () 210( =25.8) 185( =19.5) 11.9% < 0.01

User Satisfaction (1-5) 32( =0.8) 45( =04) 40.6% < 0.001

necessitate formal partnerships with ride-hailing companies to se-
cure reliable, high-throughput API access. In terms of scalability,
the choice of the Weighted Sum Model is advantageous. Its low
computational complexity ensures that the decision engine can
process a high volume of concurrent requests with minimal latency,
a crucial requirement for a real-time service.

6.4 Limitations and Avenues for Future
Research
This study, while promising, has certain limitations. The evaluation
was conducted in a simulated environment using mock APIs, which,
despite being designed to mimic real-world variability, cannot fully
capture the unpredictability of live market data. The immediate
next step for future work is the development of a live prototype
that integrates with real-time APIs from willing partners to validate
the findings in a production setting.

A significant avenue for future research lies in enhancing the
personalization capabilities of the decision engine. The current
model relies on users to manually adjust the criteria weights. A
more advanced implementation could leverage machine learning
techniques to learn a user’s implicit preferences over time. By ana-
lyzing a user’s historical choices, the system could automatically
infer their priorities (e.g., a user consistently chooses the fastest
option during weekday morning commutes but the cheapest option
on weekends) and dynamically adjust the weight vector W to pro-
vide truly personalized and context-aware recommendations. This
aligns with the broader trend of integrating Al and advanced data
analytics to create smarter and more responsive MaaS platforms.

7 CONCLUSION
7.1 Summary of Findings

This research addressed the problem of market fragmentation in
the urban ride-hailing sector, which imposes significant inefficien-
cies and cognitive load on commuters. A unified aggregation plat-
form was designed and developed to integrate multiple service
providers into a single interface. The core contribution of this work
is the application of a formal Multi-Criteria Decision-Making model,
specifically the Weighted Sum Model, to provide holistic and opti-
mized ride recommendations based on cost, ETA, and comfort. The
simulation-based evaluation demonstrated the platform’s substan-
tial benefits, including a 69.2% reduction in user decision time, an
11.9% average saving on fares, and a 40.6% improvement in overall
user satisfaction.

7.2 Concluding Remarks

By providing a transparent, efficient, and user-centric solution, ag-
gregation platforms can play a pivotal role in streamlining urban
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commuting and overcoming the barriers created by a competitive
yet siloed market. Such systems are a critical step toward realizing
the full potential of the Mobility-as-a-Service vision, where trans-
portation is viewed as a seamless, integrated utility. Future work
will focus on the challenges of live deployment and the integration
of intelligent personalization features, which will further enhance
the commuter experience and solidify the role of aggregators as
indispensable tools for modern urban mobility.
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