International Journal of Computer Techniques — IJCTVolume 12 Issue 5,0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

https://ijctjournal.org/

Violations of SOLID Principles in Real-World
Libraries: A Case Study on Java Collections

Shriram Kalyan Patil
Master of Computer
Application,
Sinhgad Institute of Business
Administration and Research,
Pune - 411048
patilshriram200@gmail.com

Abstract

SOLID principles are at the core of object-
oriented software design, supporting systems
to work in modularity, extendibility &
maintainability. Nevertheless, most advanced
and common frameworks, like the Java
Collections Framework (JCF), periodically
violate these principles, due to legacy design
choices, backward compatibility issues, and
platform demands. This study examines such
deviations from the JCF model, and finds and
analyzes specific cases (e.g. usage of
inheritance in Stack and Properties classes
and behavioral inconsistency in unmodifiable
collections). Here, we have evaluated how
these violations impact software
maintainability, extensibility, and developer
understanding. It also explores the design and
engineering tradeoffs that contributed to
these deviations and their lasting
consequences for sustainable software
engineering. In this paper, we propose
refactoring strategies and design
recommendations to improve library design
through SOLID principles.

1. Introduction

The principles of design in software
engineering today are to achieve flexibility,
maintainability, and re-usability of the
software. SOLID stands for Single
Responsibility, Open/Closed, Liskov
Substitution, Interface Segregation,
Dependency Inversion among others are the
basis of a good object-oriented design [5].
They offer developers a set of guidelines for
creating modular, testable and easily
extendable systems.

Umakant Shriram Kesare
Master of Computer
Application,
Sinhgad Institute of Business
Administration and Research,
Pune - 411048
kesareuma@gmail.com

Dr. Sharda Patil, Ph.D.
Associate Professor,
Master of Computer

Application,
Sinhgad Institute of Business
Administration and Research,

Pune - 411048
santosh.sharada@gmail.com

- Single Responsibility Principle (SRP): Each
class should have only one reason to change|8].

- Open/Closed Principle (OCP): Software
entities should be open for extension but closed
for modification[8].

- Liskov Substitution Principle (LSP): Sub-
classes must be substitutable for their base
classes without altering program correctness|[8].

- Interface Segregation Principle (ISP): Clients
should not be forced to depend on methods that
they do not use|[8].

- Dependency Inversion Principle (DIP): High-
level modules should depend on abstractions
rather than concrete implementations[8].

The SOLID principles are a good idea, but
their violations seem to be rampant in still a
lot of well-known libraries such as Java
Collections Framework (JCF) even after
being considered as a best practice. Most of
these violations are historical limitations,
backwards compatibility and compromises
made for usability. One example is that Stack
class inherits from Vector, causing violation
to the Liskov Substitution Principle (LSP)
since a stack should not provide random-
access operations for vector. Likewise the
Properties class extends Hashtable, which
would violate SRP and LSP by permitting
mixed data types and enforcing
configuration-specific behavior on a general-
purpose collection. Some such immutable
collection wrappers also like
Collections.unmodifiableList(), break the
behavior contracts, resulting in implicit
design infractions

ISSN :2394-2231

http:/www.ijctjournal.org

Page 616

mailto:patilshriram200@gmail.com
mailto:kesareuma@gmail.com
mailto:santosh.sharada@gmail.com
https://ijctjournal.org/
http://www.ijctjournal.org

B international Journal of Computer Techniques — IJCTVolume 12 Issue 5.0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

Being aware of these infractions is critical
since the Java Collections Framework is
widely used in professional software and
educational settings. While legacy limitations
sometimes serve as justification for these
design flaws, they sometimes result in
confusion among students, decreased
maintainability and dissemination of bad
design.

This study systematically analyzes violations of
the SOLID principles in the Java Collections
Framework, explores their underlying causes,
assesses their implications for software design,
and proposes recommendations for achieving
stronger adherence to these foundational design
principles in future API development.

1.1 Statement of the problem

The aim of the SOLID principles is to create
software that is robust, maintainable, and
extensible. As models representing optimal
practices of Java, however, the Java
Collections Framework contains several
failings which violate these principles. These
flaws, which stem from backward
compatibility and historical evolution, detract
from the clarity and maintainability of the
software.

For example, when a stack behaves as a
vector it clashes with its theoretical promise
to be a restricted LIFO structure. Similarly,
Properties extends the Hashtable which
allows heterogeneous key-value pairs that
violates both encapsulation and type safety.
And this is illustrative of the fact that even
the core libraries fail a great deal of the
design values they were supposed to teach.

The problem is twofold:

Technical impact: Developers who use these
APIs are forced to grapple with conflicting
behaviors that add to their cognitive
resources and the risk of misuse [7].

Educational impact: While these libraries are
extensively taught at the higher educational
institutes in Computer Science,
misconceptions about good software design
are propagated when the library design is in
question [6].

Therefore it is necessary to systematically
investigate these violations and extract

https://ijctjournal.org/

insights that will give direction for the
further development of future frameworks.

1.2 Objective of the Study

This study seeks to achieve the following
objectives:

* To understand the significance of SOLID
Principles in Object-Oriented design.

* To uncover actual SOLID principle
violations as they can be found in the Java
Collections Framework.

* To explain the impact of these violations
on the code quality, readability and
maintainability.

* To investigate the engineering and
compatibility trade-offs that brought such
violations upon themselves.

* To propose improved design approaches or
refactoring strategies that are aligned with
the SOLID principles.

* To suggest better design tactics or
refactoring methods based upon SOLID
principles. This project contains practical
and educational applications for developers
and library developers.

1.3 Hypothesis of the Study

Hi: The Java Collections Framework exhibits
multiple violations of the SOLID principles,
in the context of the SRP and LSP.

Ha: These violations negatively affect software
maintainability, and long-term usability.

Hs: Backward compatibility and legacy
design limitations are the main reasons for
the continued existence of these breaches.

Ha: The presence of such violations in a
commonly used framework affects the
developers’ interpretation and practical
implementations of SOLID principles.

2. Review of Literature :

2.1 Overview of SOLID Principles
The SOLID principles are a collection of five
design guidelines that aim to contribute
towards making software systems more
maintainable, flexible, and easy to
understand. First popularized by Robert C.
Martin (or “Uncle Bob”) [21], these
principles are extensions of the original ideas
of object-oriented programming, promoting

ISSN :2394-2231

http:/www.ijctjournal.org

Page 617

https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques — IJCTVolume 12 Issue 5,0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

modular behavior and low coupling among

classes.

* Single Responsibility Principle (SRP): A class
should have only one reason to change [8] . It
fosters cohesion by guaranteeing that every
class does one well-defined task.

* Open/Closed Principle (OCP): Software
entities should be open for extension but
closed for modification [8] . This enables
new behaviors to be added via inheritance
or composition without modifying the
existing code.

* Liskov Substitution Principle (LSP): Objects
of a subclass should be replaceable with
objects of their superclass without affecting
program correctness [8] .

* Interface Segregation Principle (ISP): Clients
should not be forced to depend on methods
that they do not use. This discourages the use
of large multipurpose interfaces [8] .

* Dependency Inversion Principle (DIP): High-
level modules should depend on abstractions
rather than concrete implementations [8] .

These principles are not “hard” rules but
design heuristics to aid developers in creating
strong and maintainable structural designs.
However, actual software frameworks
sometimes fail to address some of these due
to their compatibility with traditional systems
such as older systems, backward
compatibility or performance issues.

2.2 Violations of SOLID Principles in

Java Collections Framework

e Stack and Liskov’s Substitution Principle
(LSP) Violation

A typical case of Liskov's violation is that of
the class that extends Vector; Stack. Based
on the LSP, a subclass (stack) needs to be
usable wherever the parent class (vector) is
needed in the program without affecting the
correctness of the program. However, since
Vector provides operations such as
insertElementAt() or removeElementAt() that
break the LIFO (Last In First Out) semantics
of a stack, substitutability breaks [22].

VectorTntae 1 = new Stacko);
V.add(e, 1); /1

This misuse of inheritance creates behavior
inconsistencies. Instead, a better design

https://ijctjournal.org/

would have been composition (a stack with a
vector) rather than inheritance.

e Properties and Single Responsibility
Principle (SRP) Violation

The Properties class in Java simply extends
the Hashtable<Object, Object> which
violates both SRP and LSP.

Although on the other hand, the Hashtable is

a very general-purpose key—value data
structure, Properties focuses on tuning the
configuration settings, e.g., string-based keys
and values[23]. However, because of
inheritance, developers are allowed to keep
arbitrary objects in a Properties object, which
can lead to type and semantic mistakes.

ropet1es ogs = e Poertie)

0r0s 10, tue);

This violates SRP because the class is
required to perform configuration
management and general-purpose data
storage, and also breaks LSP because a
Properties object cannot replace a Hashtable
without causing type-related problems.

* Collections.unmodifiableList() and Behavioral
Substitution

The Collections.unmodifiableList() method
gives a read-only view of a given list, which
appears to be in line with OCP and LSP at
first, but it leads to behavioral substitution
problems if an implementation of the List
interface is shown due to the returned value
yielding UnsupportedOperationException
when modifying [9].

This violates the Liskov Substitution
Principle, where the client expects that any
List must support the add() function. This
design approach improves the immutability
of the code, but it introduces confusion and

ISSN :2394-2231

http:/www.ijctjournal.org

Page 618

https://ijctjournal.org/
http://www.ijctjournal.org

B international Journal of Computer Techniques — IJCTVolume 12 Issue 5.0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

violates the substitutability from a more
detailed design angle.

e Enumeration and Open/Closed Principle
(OCP) Concerns

Older JCF classes like Vector and Hashtable
depend on the Enumeration interface, which
is older than the new Iterator pattern; the
compatibility of the two interfaces
(Enumeration and Iterator) demonstrates how
backward compatibility can limit adherence
to OCP. Instead of adding features that would
extend or change existing code, the JCF
preserved both interfaces and resulted in a
degree of design redundancy and increased
maintenance complexity.

2.3 Consequences of SOLID
Violations in JCF

The violations discussed, although quite
subtle, have enduring implications for
software quality and developers’ experience:

* Reduced Maintainability: Inheritance-based
coupling makes changes expensive and
difficult.

* Behavioral Inconsistencies: Developers
encounter runtime errors due to
substitutability violations in unexpected
ways.

* Conceptual Confusion: Beginners usually
simply imitate bad patterns as a matter of
course for learning Java Collections.

» Type Safety Issues:Classes like Properties
undermine Java's strong typing guiding
principles.

* Increased Complexity: Backward
compatibility creates class hierarchies and
a mix of responsibilities

* Such outcomes emphasise the tradeoffs
between clean design and functional
usability in the evolution of libraries [7].

2.4 Gaps in Existing Literature

Despite the significance of SOLID principles
in software engineering, small amounts of
literature have focused on their violations in
standard libraries like JCF.

Most prior research has focused on the
following :

* Automated SOLID compliance detection.

* Case studies of object-oriented design patterns.

https://ijctjournal.org/
* Static code analysis for maintainability.

However, very limited research has been
done on the following:

* In JCF examines specific SOLID
violations.

* Historical and design context explain the
cause of these problems.

* Provides practical refactoring approaches
for better SOLID compliance

Filling this gap holds promise to enhance
academic knowledge and enhance practical
improvements in implementation of Java
library design.

3. Research Methodology
3.1 Research Approach

This study is qualitative case study study
with the objective to investigate in detail how
the Java Collections Framework (JCF)
breaches or adheres to the SOLID design
principles, that is relevant, as rather than
using numerical data, the study examines
concepts, codes, and interpret, which allows
detailed exploration of the classes and
components of the JCF presenting real world
design problems [1].

This report does not intend to critique the JCF,
instead it intends to emphasize design trade-
offs and legacy restrictions that affected
non-SOLID compliance. Examining various
examples, the study aims to draw insights
gleaned from both library designers and
software engineers.

3.2 Data Collection Method

This study utilized a qualitative analysis
method based on direct observation of source
code and documentation of the Java
Collections Framework (JCF).

* (Class hierarchies, method definitions,
inheritance, and inheritance relationship
descriptions from Java 8 and 11 API
documentation.

* Source code from OpenJDK to determine
concrete design and implementation
decisions.

* To understand the proposed design
rationale, we used official Java tutorials
and Oracle documentation.

* Other secondary sources, like academic
publications, model and design pattern

ISSN :2394-2231

http:/www.ijctjournal.org

Page 619

https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques — IJCTVolume 12 Issue 5,0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

references and software engineering books,
were cited for a conceptual background in
SOLID principles.

Each class was examined to see if its design
reflected or failed to comply with some
SOLID principles. Further, they were
categorized by the type of violation detected
and the principle violated, with their likely
cause of design violations (e.g., backward
compatibility, historic design or abuse of
abstraction).

3.3 Data Analysis Method

Comparative analysis was carried out with:

The conceptual description of the SOLID
principles, and The code implementation
behavior within Java Collections Framework.

The process was performed in the phases of
Identification of Candidate ClassesClasses
suspected of violating SOLID principles (e.g.,
Stack, Properties, Vector, Hashtable,
Collections.unmodifiableList) were selected
for further in-depth analysis.

Principle-based classification: We screened
each class for violations of the principles for
SOLID — such as SRP, OCP, LSP, ISP or
DIP.

Code and Behavior Analysis Segments of
source code, class relationship and interface
behavior were examined to inspect for
patterns (example, inheritance abuse, error of
type for example, or non-conformity in
behavioral contract).

Impact Analysis Categorical consequences
of each violation have been evaluated related
to maintainability, reusability, readability.

Refactoring Proposals Based on each
observed violation recommendation of
refactoring tactics (e.g., composition,
interfacing, abstraction) is suggested to
improve its compliance on SOLID.

4. Proposed Refactoring
Solutions

Several recommended refactoring ways for
combating the observed violations have been
proposed. These are designed to make the
JCF classes fit into SOLID principles. In
essence, they are made in the hope that they

https://ijctjournal.org/

will be able to help bring them up to code
correctly while maintaining their backward
compatibility where possible.

5.1 Refactoring the Stack Class:

Problem: Inherits from Vector, hence violates
LSP and SRP.

1. First solution : Composition and not
inheritance. The Stack class will use a List or
Deque internally for writing to storage
instead of extending Vector class.

public class Stack<T> {

private final List<T> elements = new ArrayList<>();

public void push(T item) {

elements.add(item);

public T pop() {
if (elements.isEmpty()) throw new EmptyStackException();

return elements.remove(elements.size() - 1);

i

This allows the Stack to have one
responsibility (LIFO control), and we don't
introduce non-essential vector methods (like
insertElementAt()).

2. Second solution : Use the Deque interface
(e.g., ArrayDeque) to demonstrate stack
behavior; that uses composition and its built-
in LIFO methods (push(), pop(), peek())--
simple and type secured.

stack.push(20);
System.out.println(stack.pop());

5.2 Refactoring the Properties
Class:

Problem: Extends Hashtable<Object, Object>,
which violates SRP and LSP.

Solution: Require String key-value pairs in
composition and through type-safe generics.

ISSN :2394-2231

http:/www.ijctjournal.org

Page 620

https://ijctjournal.org/
http://www.ijctjournal.org

International Journal of Computer Techniques — IJCTVolume 12 Issue 5,0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

public class Properties {

public void setProperty(String key, String value) {
config.put(key, value);

public String getProperty(String key) {
return config.get(key);

private final Map<string, String> config = new HashMap<>();

This design keeps responsibility
(configuration management) as clear as
possible and removes mixing of the unsafe
types thereby making the maintainability and
readability better.

5.3 Redesigning Unmodifiable
Collections

Problem: The Collections.unmodifiableList()
method breaks LSP by returning a list
implementation that does not fully support
the List interface.

Solution: Add ReadOnlyList interface which
defines read-only operations.

public interface ReadOnlyList<T» {
T get(int index);
int size();

boolean contains(Object o);

This isolates mutable behaviors and
immutable behaviour in turn, keeping
contracts more or less in lockstep so that
contracts are decoupled and predictable
whilst maintaining the OCP (Open for
extension, closed for modification).

5.4 General Recommendations

* Prefer composition instead of inheritance
in order to improve cohesion and reduce
coupling,

ISSN :2394-2231

http:/www.ijctjournal.org

https://ijctjournal.org/

* Explicit abstractions for immutable
structures are added to avoid behavioral
mismatches.

* Encourage backward-compatible refactoring
using adapter patterns , where direct redesign
is impractical.

* Enable backward-compatible refactoring
with the help of adapter patterns, when
redesign is impractical.Improve
documentation to identify design
exceptions and deliberate infractions of the
SOLID principles.

» Use automated static analysis to find in
large codebases SOLID violations.

5. Limitations of the study

This research indicates a clear path that leads
the Java Collections Framework (JCF) away
from the SOLID design principles but at the
same time, there are certain limitations that
need to be established so that the findings
could be interpreted accurately:

e Limited Scope of Analysis:
The study only considers three classes
of the JCF (namely Stack, Properties,
and immutable collection wrappers).
The other parts of the Java API or the
independent libraries outside the Java
API were not reviewed and could also
have different design flaws, or both are
not considered.

e Qualitative Nature of the Study:
The analysis is qualitative in nature and
mainly conceptual; it is analysis that
consists of code inspection and design
study rather than empirical measurement
like defect rate, performance
benchmarks, or user studies.
Accordingly, the results will emphasize
design reasoning, not quantitative
assessment.

e Version Dependency:
Data from OpenJDK (JDK 21) are used
for this analysis. The next versions of
Java might refactor or modify these
classes, which could make the relevance
of particular violations significantly
change.

. Subjectivity in Interpretation:
Determining whether (or when) a class
violates a SOLID principle is subjective.
Depending on the understanding from
research on design intent and practical
trade-offs, different researchers can

Page 621

https://ijctjournal.org/
http://www.ijctjournal.org

Minternational Journal of Computer Techniques — IJCTVolume 12 Issue 5.0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

potentially have slightly different views
to do with the same code.

e Lack of Tool-Based Validation:
Although SonarQube was among the
static analysis tools, this paper does not
introduce automated detection metrics
nor, through this methodology,
significant validation at the large scale
of many projects.

However, in spite of these limitations, the
analysis identifies ubiquitous design trade-
offs, which continue to impact the
fundamental architecture of Java on the
whole and lays a ground for further empirical
study.

6. Future Scope

Our current study provides many directions
for future study and development. These
recommendations may contribute to reinforce
awareness and enhance the compliance of
SOLID with software frameworks:

e Automated SOLID Compliance Detection:

There is hope by working on automated
solutions to detect SOLID compliance
violations in large Java codebases. Tools
of this kind could leverage static analysis,
AST parsing, or machine learning
techniques to uncover design anomalies.

. Quantitative Evaluation: For researchers
to further enhance this work, it would be
beneficial to gather empirical metrics
(maintainability index, coupling,
cohesion, etc.) as they quantitatively
measure the effect of SOLID
compliance or violation on code quality.

e Broader Framework Comparison:
Comparison across some standard
libraries such as .NET Collections, C++
STL, or Python’s Collections module
can help you see if there are similar
design trade-offs between other
ecosystems.

o Developer Awareness and Education:
Future studies may survey both
developers and students to examine
whether they are impacted by being
exposed to an imperfect version of the
library's design while learning object-
oriented principles.

ISSN :2394-2231

http:/www.ijctjournal.org

https://ijctjournal.org/

e Proposing Refactored API Models:
Building on what we've learned,
scholars can code SOLID-compliant
prototypes of existing JCF classes with
the aid of composition, generics, or
design patterns to prove improved
maintainability.

7. Conclusions

Our results validate that the Java Collections
Framework (JCF), despite developing to a
certain extent and getting popular, contains a
number of shortcomings of the SOLID
principles, in particular the Single
Responsibility Principle (SRP) and the
Liskov Substitution Principle (LSP),so it’s
supporting Hypothesis Hi. We found that
these violations occurred in the Stack,
Properties, and Collections.unmodifiableList()
classes, in which design integrity is impaired
by improper inheritance, type inconsistency,
and behavioral substitution issues

Thus consistent with Hypothesis Ha, these
violations have a negative impact on the
maintainability, readability, and long-term
use of the software. For example, misusing
inheritance in Stack and Properties generates
coupling and misunderstanding, and lack of a
coherent behavior in unmodifiable
collections leads to runtime errors and fuzzy
conceptual understanding among developers.

In addition, the results support Hs by
demonstrating that backward compatibility
and legacy design are the most common
causes of these violations. Because of the
historical development of the JCF and the
requirement to maintain compatibility with
the previous versions, structural
reorganization was not possible, and
functional and design issues were
compromise-based.

Thirdly, reinforcing the hypothesis Ha, the
research demonstrates the educational
significance of such design weaknesses as the
JCF also serves to teach concepts associated
with object oriented programming.
Misconceptions about good design
techniques can arise from such infringements
if they aren't adequately considered.
Educators and curriculum developers need to
remind students to reference these exceptions
for the purpose of explaining SOLID as a
strategy, in order to avoid misconception
among students.

Page 622

https://ijctjournal.org/
http://www.ijctjournal.org

B international Journal of Computer Techniques — IJCTVolume 12 Issue 5.0ctober 2025

Open Access and Peer Review Journal ISSN 2394-2231

On the whole, the study emphasizes the need
for regular re-evaluation of existing libraries
like JCF based on changing standards in
software design. Promoting that a
composition rather than an inheritance of
code elements would be adopted, the use of
type-safe abstractions, and the
encouragement of responsible developer
behaviour will enable the next Framework to
incorporate more of the SOLID approach,
improving the quality of codes and
instruction in a sound design.

8. References

» Journal of Systems and Software Volume
220, February 2025, 112254 .

¢ Abid, C., Alizadeh, V., Kessentini, M., do
Nascimento Ferreira, T., Dig, D., 2020. 30
years of software refactoring research: A
systematic literature review. arXiv:
2007.02194.

* Ampatzoglou, A., Chatzigeorgiou, A., 2007.
Evaluation of object-oriented design patterns
in game development. Information and
Software Technology 49, 445-454.
https://doi.org/10.1016/j.infsof.2006.07.003

* Erich Gamma,Richard Helm ,Ralph

Johnson,John Vlissides, 1994. Design Patterns:

Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional.

* Martin, R.C., 2000. Design Principles and
Design Patterns 34.

 Pillay, N., 2010. Teaching Design Patterns

* Ramasamy, S., Jekese, G., Hwata, C., 2015.

Impact of Object-Oriented Design Patterns on
Software Development. International Journal

of Scientific and Engineering Research
Volume 3, 6.

* https://www.researchgate.net/publication/2734
51390 SOLID Principles in Software Archi
tecture_and Introduction to RESM_Concept

_in_OOP.

* Abid, C., Alizadeh, V., Kessentini, M., do
Nascimento Ferreira, T., Dig, D., 2020. 30
years of software refactoring research: A

systematic literature review. arXiv:
2007.02194.

* AlOmar, E.A., AlRubaye, H., Mkaouer, M.W.,

Ouni, A., Kessentini, 2021. Refactoring

practices in the context of modern code review:

An industrial case study at X erox. In: 2021

IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering

in Practice. ICS

¢ AlOmar, E.A., Mkaouer, M.W., Ouni, A.,
2024. Behind the intent of extract method
refactoring: A systematic literature review.

ISSN :2394-2231

http://www.ijctjournal.org

https://ijctjournal.org/

IEEE Trans. Softw. Eng. 50 (4), 668—694.
http://dx.doi.org/10.1109/TSE.2023.3345800.
Bass, L., Clements, P., Kazman, R., 2012.
Software Architecture in Practice: Software
Architect Practice_c3. Addison-Wesley.
Becker, C., Chitchyan, R., Duboc, L.,
Easterbrook, S., Penzenstadler, B., Seyff, N.,
Venters, C.C., 2015. Sustainability design and
software: The Karlskrona manifesto. In: 2015
IEEE/ACM 37th IEEE International
Conference on Software Engineering. Vol. 2,
IEEE, pp. 467-476.

Bennett, K.H., Rajlich, V.T., 2000. Software
maintenance and evolution: a roadmap . In:
Proceedings of the Conference on the Future
of Software Engineering. pp. 73-87.

Bennett, K.H., Ramage, M., Munro, M., 1999.
Decision model for the legacy systems. In:
IEE Proceedings-Software. Vol. 146, pp. 153—
159.

Bianchi, A., Caivano, D., Marengo, V.,
Visaggio, G., 2003. Iterative reengineering of
legacy systems. IEEE Trans. Softw. Eng. 29
(3), 225-241.

Candela, I., Bavota, G., Russo, B., Oliveto, R.,
2016. Using cohesion and coupling for
software re-modularization : Is it enough?
ACM Trans. Softw. Eng. Methodol. (TOSEM)
25 (3), 1-28.

Capra, E., Francalanci, C., Merlo, F., 2010.
The economics of community open-source
software projects: an empirical analysis of
maintenance effort. Adv. Softw. Eng. 2010.
Chidamber, S., Kemerer, C., 1994. A metrics
suite for object-oriented design. IEEE Trans.
Softw. Eng. 20 (6), 476-493.
http://dx.doi.org/10.1109/32.295895. Curtis,
B., Sappidi, J., Szynkarski, A., 2012.
Estimating the size, cost, and type of
technical debt. In: 2012 Third International
Workshop on Managing Technical Debt.
MTD, IEEE, pp. 49-53.

Dams, D., Mooij, A., Kramer, P., Radulescu,
A., Vanhara, J., 2018. Model-based software
restructuring: Lessons from cleaning up COM
interfaces in industrial legacy codes . In: 2018
IEEE 25th International Conference on
Software Analysis, Evolution and
Reengineering. SANER, pp. 552-556.
http://dx.doi.org/10.1109/SANER.2018.
8330258.
https://www.digitalocean.com/community/con
ceptual-articles/s-o-1-i-d-the-first-five-
principles-of-object-oriented-design
https://stackoverflow.com/questions/30616660
/which-solid-principles-are-violated

Java-8 Documentation
https://docs.oracle.com/javase/8/docs/api/java/
util/Properties.html

Page 623

http://www.researchgate.net/publication/2734
http://dx.doi.org/10.1109/TSE.2023.3345800
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/SANER.2018
http://www.digitalocean.com/community/con
https://ijctjournal.org/
http://www.ijctjournal.org

	Abstract
	1.Introduction
	1.1Statement of the problem
	1.2Objective of the Study
	1.3Hypothesis of the Study

	2.Review of Literature :
	2.2Violations of SOLID Principles in Java Collections
	2.3Consequences of SOLID Violations in JCF
	2.4Gaps in Existing Literature

	3.Research Methodology
	3.1Research Approach
	3.2Data Collection Method
	3.3Data Analysis Method

	4.Proposed Refactoring Solutions
	5.1Refactoring the Stack Class:
	5.2Refactoring the Properties Class:
	5.3Redesigning Unmodifiable Collections
	5.4General Recommendations

	5.Limitations of the study
	6.Future Scope
	7.Conclusions
	8.References

