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Abstract - Hypertension continues to be a significant health
challenge in Zambia, particularly in the Copperbelt Province,
where many cases are diagnosed late and often advance to severe
complications. This research aimed to design an artificial
intelligence—driven system capable of predicting hypertension at
earlier stages, thereby supporting preventive healthcare in
resource-constrained settings. The study adopted a flexible,
mixed-methods design that combined publicly available health
datasets with professional insights from local medical
practitioners. Predictive variables, including blood pressure
readings, cholesterol levels, body mass index, and heart rate,
were utilized to train various deep learning models. The
approaches tested included Deep Neural Networks,
Convolutional Neural Networks, and Recurrent Neural Networks
enhanced with Long Short-Term Memory capabilities.

Model performance was assessed using widely accepted
evaluation measures, namely accuracy, recall, precision, the F1
measure, and the area under the curve. The findings indicated
that the optimized Convolutional Neural Network achieved an
accuracy level of slightly above 85 percent. In comparison, the
Long Short-Term Memory model produced an accuracy of
eighty-three percent, with a recall rate exceeding ninety percent
in detecting hypertensive cases. To ensure the system was
practical for end-users, it incorporated a user-friendly interface
developed with Python Tkinter and Jupyter Notebook, enabling
real-time prediction and reporting. Its modular server-client
architecture enhanced both scalability and security, while model
interpretability was supported through visualization techniques
such as gradient-based mapping.

The research also highlighted several challenges, including the
shortage of structured local datasets, insufficient computing
resources, and limited knowledge of artificial intelligence within
the health sector. Despite these obstacles, the research
demonstrated that tailored deep learning applications can
strengthen public health decision-making in Zambia and provide
a foundation for the development of future data-driven medical
solutions, as exemplified by the prototype system developed.

Keywords - Deep Learning, Artificial Intelligence, Hypertension
Prediction, Convolutional Neural Net, and Long Short-Term
Memory.

1. INTRODUCTION

Hypertension, or high blood pressure, has become a
pressing health concern in Zambia, particularly in the
Copperbelt Province, where late diagnosis is common and
often leads to serious complications [12], [15]. This condition
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is strongly influenced by lifestyle transitions such as poor
dietary habits, reduced physical activity, and rapid urbanization,
all of which contribute to the growing burden of non-
communicable diseases [6], [14]. In many cases, individuals
only discover they are hypertensive after experiencing severe
outcomes like stroke, kidney disease, or cardiovascular failure,
which complicates treatment and increases health costs [15].
Conventional diagnostic practices in Zambia remain largely
reactive, relying on traditional methods that fail to identify
hypertension at an early stage. As a result, large numbers of
patients go undiagnosed until the disease has advanced,
creating significant social and economic consequences,
including loss of productivity and high medical expenses [3].

To address these challenges, this research investigates the
potential of artificial intelligence and deep learning in
predicting the onset of hypertension. Deep learning is a branch
of artificial intelligence that uses layered neural network
architectures to automatically learn complex data
representations and patterns from large datasets, enabling more
accurate predictions in tasks such as image recognition, speech
processing, and medical diagnosis [11]. International evidence
shows that advanced models, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
can process extensive health datasets to identify subtle patterns
of risk factors [5], [7]. Such technologies have demonstrated
promising results in early disease detection, yet their use in
Zambia remains minimal [9]. The gap between global
innovation and local medical practice underscores the need to
develop context-specific solutions. By incorporating both
secondary health datasets and local information from the
Copperbelt Province, this research seeks to build a predictive
framework tailored to Zambia's healthcare environment.

The objective of the research is to determine whether deep
learning approaches can accurately forecast hypertension using
locally relevant health indicators. Additionally, the research
will identify key predictors, evaluate various algorithmic
models, and provide recommendations for integrating
predictive systems into clinical practice. Through this approach,
the research aims to shift healthcare delivery in Zambia from a
focus on treatment to one on prevention, demonstrating the
potential of digital health innovations to improve outcomes in
low-resource settings [16], [13]. Ultimately, this research aims
to make both practical and scientific contributions that support
the development of Al-enabled healthcare in sub-Saharan
Africa [3]. developments align with the broader growth of
mobile learning (m-learning), which leverages the ubiquity of
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smartphones to provide flexible, accessible, and learner-
centered educational opportunities [3].

In programming education, this convergence of
communication and coding tools presents an opportunity to
support interactive, mobile-friendly learning environments that
enhance engagement and practical skill development.

Despite these advancements, most chat-based platforms
lack seamless integration with coding environments, requiring
learners to switch between multiple tools, such as standalone
IDEs (Integrated Development Environments) and web
compilers.

This fragmented process disrupts cognitive flow, delays
feedback, and limits collaboration, factors that are critical in
programming education. To address this gap, this research
develops a chat-based platform with integrated Python code
compilation and Al-driven real-time feedback. The
contribution lies in designing, implementing, and evaluating a
unified system that allows learners to write, execute, and debug
code within a chat interface while receiving contextual
guidance and engaging in collaborative learning.

A. Problem Statement

Hypertension remains one of the leading non-
communicable diseases (NCDs) globally and presents a
significant public health challenge in Zambia,
particularly in the Copperbelt Province. The increasing
prevalence of hypertension in this region is linked to
urbanization, sedentary lifestyles, poor dietary habits,
and limited access to preventive healthcare services [14],
[6]. Despite its rising burden, hypertension often remains
undetected until it causes severe complications such as
stroke, kidney disease, or cardiovascular failure [15].
This is mainly due to the reactive nature of the Zambian
healthcare system, which lacks adequate screening tools
and predictive diagnostic frameworks.

Recent advancements in artificial intelligence (AI) have
demonstrated substantial success in disease prediction and
early diagnosis globally [7], [10]. In particular, deep learning
models have shown the ability to analyze complex health
datasets and identify subtle patterns that may signal the early
stages of chronic diseases, such as hypertension [5], [12].
However, Zambia has yet to fully embrace or apply these
technologies within its healthcare system, thereby creating a
gap between global innovations and local healthcare practices.

This research is motivated by that gap—while Al-based health
prediction tools have succeeded internationally, their
implementation in Zambia remains limited. The philosophical
and practical value of this research lies in its potential to
transform the Copperbelt Province's healthcare approach from
reactive treatment to proactive, data-driven prevention. By
evaluating the feasibility and effectiveness of deep learning
models trained on local or regionally adapted data, this
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research aims to contribute to both the scientific field and
Zambia's healthcare development.

Additionally, this work seeks to identify region-specific risk
factors that significantly influence hypertension predictions,
thereby improving the precision and applicability of Al
models in local contexts. If successful, the outcomes could
justify expanded investment in Al-powered health systems
across Zambia and other similarly resource-constrained
environments [3], [9].

B. Research Objectives

1. To collect and preprocess relevant clinical and lifestyle
data from the Copperbelt Province, then design and
implement deep learning algorithms (CNN, RNN,
LSTM) suitable for early hypertension prediction.

2. To evaluate multiple deep learning models using
comprehensive  performance  metrics  (accuracy,
precision, recall, ROC curves, AUC scores) and identify
the most significant local hypertension predictors
through model interpretability techniques.

3. To provide actionable recommendations for integrating
the predictive system into local healthcare practices,
enabling early intervention and disease prevention in
Zambia's healthcare system.

C. Research Questions

1. How can clinical and lifestyle data from the
Copperbelt Province be effectively collected,
preprocessed, and utilized to design and
implement deep learning models such as CNN,
RNN, and LSTM for early prediction of
hypertension?

2. How can multiple deep learning algorithms be
comparatively evaluated using performance
metrics such as accuracy, precision, recall, ROC
curves, and AUC scores to determine the most
effective model and identify the most significant
local predictors of hypertension through
interpretability techniques??

3. To what extent can the developed deep learning—
based hypertension prediction system be
integrated into Zambia’s healthcare framework to
enhance early diagnosis, support preventive
interventions, and strengthen data-driven clinical
decision-making?

II. LITERATURE REVIEW

Hypertension continues to pose a serious health challenge
globally, especially in developing countries where healthcare
systems often struggle with limited infrastructure and delayed
diagnoses [1], [10]. Many cases remain undetected until
complications arise, emphasizing the importance of early
prediction systems. The introduction of artificial intelligence
(AI) and deep learning has created new opportunities for
improving how diseases are detected and managed [6], [7], [8].
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These technologies are capable of analyzing large amounts of
clinical information, uncovering complex relationships
between different health indicators, and providing predictions
that traditional methods might overlook. Frameworks such as
TensorFlow and Keras have been instrumental in designing
adaptive models that can learn from medical data to support
early hypertension detection [18], [19]. In countries such as
Zambia, where healthcare facilities are often under strain, such
systems have the potential to enhance screening, improve
treatment outcomes, and support preventive medicine [12],
[13].

A. Al and Deep Learning in Precision Health

Recent developments in Al and deep learning have
significantly advanced the idea of precision health by enabling
the use of predictive analytics in clinical decision-making.
Dulam and Gosukonda [20] demonstrated that deep learning
models can integrate various patient data sources to improve
the accuracy of medical diagnoses, while Rajkomar et al. [7]
showed that deep architectures trained on electronic health
records outperform traditional predictive models. Similarly,
Racic et al. [21] found that convolutional neural networks are
highly effective in detecting diseases from medical images.
These examples demonstrate that Al and deep learning can
have a significant impact on healthcare outcomes. However, in
Zambia, adoption remains slow because of limited access to
technology and a lack of skilled personnel [12], [13]. To close
this gap, locally adapted frameworks that consider
infrastructure, cost, and training are needed to make Al-based
health tools both practical and sustainable.

B. Machine Learning and Deep Learning for Non-
communicable diseases

Machine learning and deep learning techniques are being
increasingly used to address non-communicable diseases,
including hypertension, diabetes, and cardiovascular disorders.
Chen et al. [6] and Kumar and Singh [8] reported that neural
networks and other predictive algorithms can identify early
disease patterns that help improve medical interventions. The
use of Scikit-learn and NumPy for data preparation [16], [17],
combined with TensorFlow and Keras for model training [19],
allows for the development of reliable predictive systems that
maintain accuracy even with limited computational power.
These systems can be applied in Zambia to enhance medical
analysis and reduce diagnostic delays, providing health
professionals with timely information to guide patient
management [10], [11], [13]. The integration of these methods
into hospital systems could significantly strengthen disease
monitoring and resource allocation in public health.

C. Wearable Technologies and Continuous Deep
Learning Monitoring

The combination of wearable devices and deep learning
algorithms has made it possible to monitor patient health and
detect warning signs early continuously. Lee et al. [15]
demonstrated that wearable devices paired with Al-driven
models encourage patients to stay engaged in their care by
providing constant feedback on vital signs such as heart rate
and blood pressure. Recurrent neural networks and long short-
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term memory architectures have proven effective in analyzing
this time-based data and predicting potential health risks [18].
However, despite their promise, such technologies are still rare
in Zambia due to high costs and weak digital infrastructure
[10], [12]. Locally adapted deep learning systems capable of
replicating these monitoring functions through affordable
digital platforms could help bridge the technological divide and
support early detection in underserved communities.

D. Deep Learning and Al-based Diagnostic Tools in
low-resource settings

Deep learning-based diagnostic systems have shown promise
in improving health outcomes where resources are limited.
Rajkomar et al. [7] found that AI models trained on electronic
health records can achieve better diagnostic accuracy than
conventional clinical approaches. Dulam and Gosukonda [20]
further emphasized that these systems can lower operational
costs while improving diagnostic consistency and scalability.
Nonetheless, successful implementation in countries such as
Zambia remains challenging due to shortages in technical
expertise, data infrastructure, and ethical regulation [12], [13].
McKinney [3] noted that strong data management frameworks
and computational support are necessary for building effective
diagnostic systems. Overcoming these limitations will require
targeted investment in training, the creation of data-sharing
policies, and collaboration between research institutions and
healthcare providers.

E. Theoretical Frameworks

This research draws on Precision Health Theory and Systems
Theory to explain how deep learning can be applied in the
healthcare sector. Precision Health Theory emphasizes
personalized, data-informed care guided by predictive
analytics [15], whereas Systems Theory emphasizes how
technology, institutions, and social structures interact to
influence healthcare delivery [4]. When combined, these
theories demonstrate how deep learning can serve as a bridge
between existing health data and more efficient care systems.
They also provide a framework for understanding how
predictive analytics can improve decision-making and
resource use in the Zambian context [11], [13].

III. METHODOLOGY

A. Methodology

This section presents the architectural design and logical
modeling of the hypertension prediction system using
diagrams that visually represent its components and processes.
An Entity-Relationship (ER) diagram was employed to depict
the relational structure among critical entities such as patients,
medical records, predictions, and machine learning models,
which is essential for ensuring efficient data organization and
management [10]. The Use Case diagram captures interactions
between key system actors—patients, healthcare providers,
and model administrators—across core operations like
registering patients, creating medical records, generating
predictions, and configuring models. A procedural flowchart
illustrates the sequential logic from data input to prediction
output, enhancing the interpretability of system behavior and
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decision-making flow [7]. Collectively, these design tools
contribute to building a robust, scalable, and context-aware
deep learning-based system tailored to the healthcare needs of
Zambia's Copperbelt Province. The visual modeling approach
supports clear system development, encourages stakeholder
engagement, and provides a foundation for future
enhancements, such as integrating locally sourced datasets and
retraining models to improve precision [18], [16].

Agile development life
cycle diagram

Predicting the Onset of Hypertension Using Deep
Learning Models in the Copperbelt Province of
Zambia

Data Collection

System Evaluation
Metrics

Data
Pre-Processing

Sprint I’
(2-3 Weeks)

System Design
Actual Diagrams

Model selection and
Architecture

System Design

Figure 1: Agile Development Life Cycle

A qualitative exploratory design grounded in a constructivist
paradigm captured students’ experiences and perceptions of the
platform [18]. Data were collected through semi-structured
interviews with 12 purposively sampled students, reflective
diaries, and observational field notes. Thematic analysis, using
Orange Data Mining and Voyant, revealed organized patterns
in usability, engagement, collaboration, and the impact of Al
feedback [19]. Credibility was strengthened through
triangulation, member checking, thick description, and peer
debriefing. Ethical clearance, informed consent, and
confidentiality safeguards ensured research integrity. A formal
Software Requirements Specification (SRS) defined functional
and non-functional requirements to guarantee system
robustness and adaptability to low-resource educational
contexts.

B. Research Paradigm

This research adopts a positivist paradigm, emphasizing
objectivity, quantification, and replicability. Positivism is
particularly suitable for data-driven studies, including those
involving predictive analytics in healthcare through machine
learning [19]. This paradigm assumes that hypertension risk
can be predicted from physiological and lifestyle data using
algorithmic models. It supports the development of a
generalizable and interpretable deep learning system aligned
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with international best practices in artificial intelligence for
carly disease detection [8]. administrators—across core
operations like registering patients, creating medical records,
generating predictions, and configuring models. A procedural
flowchart illustrates the sequential logic from data input to
prediction output, enhancing the interpretability of system
behavior and decision-making flow [7]. Collectively, these
design tools contribute to building a robust, scalable, and
context-aware deep learning-based system tailored to the
healthcare needs of Zambia's Copperbelt Province. The visual
modeling approach supports clear system development,
encourages stakeholder engagement, and provides a
foundation for future enhancements, such as integrating
locally sourced datasets and retraining models to improve
precision [18], [16].

C. Data Sources and Inclusion Criteria

Because structured local EHRs are limited, we used secondary,
open health datasets for model prototyping and internal
validation, complemented by expert elicitation to localize
features. Tabular records were drawn from public repositories
(e.g., BRFSS/CDC and Kaggle cardiovascular risk datasets),
retaining adult records (>18 years) with non-missing core
vitals and metabolic markers. Where retinal imaging labels
were available, a subset of hypertensive retinopathy cases was
used to test image-aware extensions. To improve contextual fit,
Zambian clinicians reviewed variable definitions, clinical
ranges, and label intent, and guided the selection of locally
relevant covariates (e.g., occupational activity, salt intake
proxies) [6], [14]

Table 1 CNN Retinopathy Dataset

Ead

Image Hypertensive
Retinopathy

O0000ce?.png 1

00000 ce9. png o

0O0000de9. png 1

00000 dea.png 1

This dataset links retinal image file names to diagnostic labels
for hypertensive retinopathy, where “1” indicates presence and
“0” absence. Out of four samples, three are positive and one is
negative, providing variation useful for model training and
testing. Retinal imaging is essential in hypertension studies
because high blood pressure can damage retinal vessels,
causing changes like narrowing or leakage that are detectable
in scans. These images, therefore, serve as a non-invasive
method for monitoring hypertension-related complications and
advancing predictive research [20].

D. Outcomes, Predictors, and Variable Handling

The research considered a binary outcome variable
representing hypertension status, where a value of 1 indicated
hypertensive cases and zero (0) denoted non-hypertensive
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individuals, as specified in the dataset. The predictor variables
included demographic and clinical characteristics such as age,
sex, body mass index (BMI), systolic and diastolic blood
pressure, and maximum recorded heart rate (thalach).
Additional factors included lipid measures, such as cholesterol
and fasting blood sugar levels, electrocardiogram (ECG)
descriptors, and selected lifestyle characteristics. For baseline
statistical ~comparisons and  hypothesis-driven  tests,
generalized linear models were applied. These models
followed the standard specification.

The central focus of the analysis was the likelihood of
developing hypertension, which served as the dependent
outcome. This risk was examined in relation to a range of
standardized explanatory variables, including demographic
details, blood pressure readings, cholesterol levels, and
lifestyle-related indicators. Random variation within the data
was acknowledged and treated as background error. The use
of regression analysis provided a transparent and interpretable
starting point by showing how individual predictors
influenced the outcome; however, the method was limited to
linear patterns. To gain deeper insights, advanced deep
learning techniques were introduced, as these models are
capable of identifying complex, non-linear relationships
among the same set of variables [5], [12], [16].

E. Preprocessing and Feature Engineering

Records with critical label gaps were excluded, while the
remaining missing predictors were imputed using the median
for continuous variables and the mode for categorical
variables. The imputed values were cross-checked to ensure
clinical plausibility. Categorical variables were one-hot
encoded, and continuous variables were standardized using z-
scores. Obvious data entry errors (e.g., diastolic blood
pressure greater than systolic blood pressure) were removed
after manual review. To address differences between
international and Zambian datasets, three adjustments were
applied: (i) trimming and adjusting extreme values to
clinically acceptable ranges, (ii) stratifying data splits
according to outcomes, and (iii) calibrating decision
thresholds on the validation set to favor high-recall operating
points, consistent with clinical practice [12], [6].

Three families of models were evaluated. The first was the
Deep Neural Network (DNN), designed for tabular data,
consisting of three to five dense layers with 64-256 units,
ReLU activations, batch normalization, and dropout ranging
from 0.2 to 0.4, followed by a sigmoid output layer for binary
risk prediction. The second was the Convolutional Neural
Network (CNN), applied to both tabular and image data. For
tabular data, features were reshaped into two-dimensional
grids to capture local interactions. For image data, particularly
the hypertensive retinopathy subset, a lightweight CNN with
two to three blocks of 3x3 convolutions and max pooling was
employed [11], [2]. The third family included Recurrent
Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) models, which were applied to sequential records of
vital signs. These models utilized one or two LSTM layers
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with 32—-128 units to capture temporal patterns across patient
visits.

All models were implemented in TensorFlow/Keras (Python),
utilizing the Adam optimization algorithm with a decaying
learning rate, ranging from le-3 to le-4. Binary cross-entropy
loss was applied, with mini-batch sizes ranging from 32 to 128,
early stopping based on validation loss, and automatic
learning rate reduction upon plateauing [16] [19].

F. Training, Validation, and Removal Tests.

The dataset was divided into training, validation, and testing
groups in proportions of 70%, 15%, and 15%, respectively. To
reduce bias caused by uneven class distributions, class weights
were applied, and the Synthetic Minority Oversampling
Technique (SMOTE) was used only on the training set when
necessary. The reliability of the models was assessed using
five-fold cross-validation, and their performance was reported
as averages with standard deviations. To evaluate the
importance of different feature types, removal tests were
conducted by leaving out groups of variables such as lipid
indicators and ECG attributes. This approach demonstrated
their contribution to prediction performance and guided
priorities for future data collection [5], [12], [16], [10].
RESULTS

G. Model Evaluation Metrics

The primary evaluation metrics were recall (sensitivity) for
hypertensive cases and the Fl-score. Secondary metrics
included precision, specificity, accuracy, and the area under
the receiver operating characteristic curve (AUROC) with
95% confidence intervals estimated via bootstrapping [16].

Performance evaluation was based on standard binary
classification outcomes:

True Positives (TP): correctly predicted cases of hypertension.

True Negatives (TN): correctly predicted non-hypertensive
cases.

False Positives (FP): non-hypertensive cases predicted as
hypertensive.

False Negatives (FN): hypertensive cases predicted as non-
hypertensive.

These formed the foundation for computing precision, recall,
accuracy, and Fl-score as recommended in prior work [5],
[12]. ROC analysis guided the choice of operating points to
maximize clinical safety by prioritizing high recall while
maintaining actionable precision.

Precision

Precision measures the model’s reliability in identifying
patients with hypertension. It is the proportion of correctly
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classified hypertensive cases among all those predicted as
hypertensive [5], [12]:

Precision=

Recall, or sensitivity, quantifies the model’s ability to detect
actual hypertensive patients by minimizing missed diagnoses

(6], [12]:

Recall=——
"

Accuracy provides an overall measure of correctness across
both classes. It calculates the proportion of correctly classified
cases out of the total [5], [12]:

)+ )
)+ )

Although useful, accuracy can be misleading in datasets with
imbalanced classes.

The Fl-score balances the trade-off between precision and
recall by taking their harmonic mean. It is particularly
valuable in imbalanced datasets [7], [8]:

Precison X Recall
Fl-score= ——
Precision + Recall

ER Diagram

H. System Design

This Entity-Relationship (ER) diagram illustrates the
architecture of a hypertension prediction system using deep
learning models in the Copperbelt Province of Zambia. The
diagram highlights key entities, including Patient, Medical
Record, Model, and Prediction, along with their attributes and
relationships. Patients are uniquely identified by a Patient ID
and linked to their medical records, which include clinical
variables such as blood pressure, cholesterol levels, fasting

blood sugar, type of chest pain, and thalassemia status. The
Medical Record entity is connected to Predictions that
generate a risk score and risk level, produced by a trained
Model that stores details such as training data, accuracy, and
version. This structure supports systematic data organization,
enabling accurate and interpretable predictions of
hypertension [8] [10].

IV. RESULT

This section integrates empirical findings with interpretation,
highlighting the implications of the results for early detection
of hypertension in low-resource settings. We focus on the
most policy- and clinic-relevant outcomes (differentiation),
sensitivity to hypertensive cases, and operational reliability,
and we briefly compare our work to recent studies to highlight
its novelty and remaining challenges. All figures and tables
are embedded at their first mention, numbered consecutively,
and designed for black-and-white printing.

Predicting the onset of Hypertension using Deep learning Models In
the Copperbelt Province of Zambia

Patient

Model ID {PK)

Predicts

Record ID

Resting Blood

Cholestorol
Fasting blood
sugar
Chest pain
type

Medical Record

Prediction

Patient ID {PK)

Figure 2 ER Diagram for RNN and LST
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Figure 3 Evaluating the LSTM Model

This figure 3 illustrates the dataset head and descriptive
statistics used in the Hypertension Prediction System. The
dataset integrates demographic, clinical, and diagnostic
variables, including age, blood pressure, cholesterol levels,
electrocardiogram (ECG) results, and fasting blood sugar,
with hypertension status serving as the primary outcome.
Statistical summaries—comprising counts, means, standard
deviations, and ranges across more than 26,000
observations—facilitated data inspection and preprocessing
[18], [19]. These summaries were crucial for detecting outliers,
assessing distributional patterns, and evaluating overall data
quality before model training. The dataset contained a mixture
of categorical and continuous predictors, reflecting the
multifactorial nature of hypertension risk and necessitating
normalization and encoding to optimize deep learning
performance [5], [12]. Embedding descriptive analysis within
the system interface enhanced

transparency, reproducibility, and interpretability, thereby
establishing a strong foundation for generating reliable

v

Train CNN Model
Load Retina Image
Classify Retina image

Figure 4

predictions [16], [10/
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Figure 4 displays the model integration menu of the
Hypertension Prediction System, featuring options for training
convolutional neural networks (CNNs), loading retina images,
and classifying them, with additional support for visualization
through Grad-CAM. The inclusion of CNN-based retinal
image analysis underscores the system’s ability to integrate
multimodal diagnostics, moving beyond traditional tabular
health indicators. This functionality is significant because
hypertension is often detectable through retinal changes, and
combining imaging with clinical records enhances the
reliability of prediction. In comparison with similar Al-driven
diagnostic platforms reported in recent studies, the flexibility
to switch between RNN and CNN modules suggests a scalable
framework adaptable to multiple forms of healthcare data,
which is particularly valuable in low-resource contexts where
dataset availability is fragmented.

@ Hyperte adiction Syste — o x

Jata Preparation Model Help

Predicting the Onset of Hypertension Using Deep Learning Models in the
Copperbelt Province, Zambia

# Detailed Evaluation Results

Number of Maj

Th

Figure 5 presents the detailed evaluation metrics of the

Figure 5

Hypertension Prediction System, highlighting its model
performance across key classification indicators. The system
achieved a precision of 0.80, recall of 0.86, and an F1-score of
0.83, signifying balanced accuracy between correctly
predicted positive cases and false negatives. The support count
of 2,357 indicates a robust dataset used for validation.
Additionally, the accuracy rate of 0.86 demonstrates the
model’s strong predictive reliability, while macro and
weighted averages of 0.85 across precision, recall, and F1-
score suggest consistent performance across different risk
categories. The confusion matrix further confirms that truest
hypertension cases were correctly identified, reflecting the
model’s sensitivity and specificity. Collectively, these metrics
validate the technical soundness of the deep learning model
and reinforce its capability to deliver dependable predictions
for early hypertension detection in Zambia’s Copperbelt
Province. Convolutional neural networks (CNNs), loading
retina images, and classifying them, with additional support
for visualization through Grad-CAM. The inclusion of CNN-
based retinal image analysis underscores the system’s ability
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to integrate multimodal diagnostics, moving beyond
traditional tabular health indicators. This functionality is
significant because hypertension is often detectable through
retinal changes, and combining imaging with clinical records
enhances the

reliability of prediction. In comparison with similar Al-driven
diagnostic platforms reported in recent studies, the flexibility
to switch between RNN and CNN modules suggests a scalable
framework adaptable to multiple forms of healthcare data,
which is particularly valuable in low-resource contexts where
dataset availability is fragmented.

Predicting the Onset of Hypertension Using Deep Learning Models in the
Copperbelt Province, Zambia

|

Hypertension Risk Prediction
Probability: 0.07

Figure 6 LSTM Result Prediction

Figure 6 illustrates the output of a deep learning—based
Hypertension Prediction System designed to estimate an
individual's risk of developing hypertension in Zambia’s
Copperbelt Province. The model uses patient input data such
as exercise response, thalassemia type, and primary vessel
count to compute a probability score through deep learning
algorithms implemented in Python and TensorFlow [3], [17],
[19]. In this instance, the system predicts a probability of 0.07,
signifying a very low risk of hypertension. Based on this result,
the Al model provides a recommendation to maintain a
healthy lifestyle, which aligns with preventive health
principles emphasized in Zambian studies on hypertension
care and chronic disease management [10], [13]. The interface,
developed using Tkinter and supported by visualization tools
such as Matplotlib, provides an intuitive display of prediction
outcomes [5], [14]. By integrating medical datasets with
advanced learning architectures, this system demonstrates the
role of Al and big data in transforming early disease detection
and health monitoring [6], [7], [15], [20].

Figure 7 presents the output interface of a deep learning—based
Chronic Disease Detection System designed to predict
hypertension risk through image-based diagnosis. The
displayed window shows a prediction result for the input
image “0009cb21.png,” which the model classifies as
“Normal” with a probability score of 0.4587. This indicates
that the system detected no significant hypertensive features in
the analyzed image and that the individual is within a normal
health range. The model likely utilized convolutional neural
network (CNN) architectures to extract and interpret medical
image features for classification, ensuring reliable
differentiation between normal and hypertensive cases. The

/ijctjournal.org/

result window provides a concise summary of the system’s
diagnostic decision, allowing users to interpret outcomes
quickly. This demonstrates how artificial intelligence and deep
learning technologies can assist in non-invasive, image-based
health assessments for early hypertension screening in clinical
and research contexts.

A. Evaluating the LSTM Model

This diagram shows a prototype system for predicting the
onset of hypertension using deep learning models in the
Copperbelt Province of Zambia. Input features include
demographic, clinical, and lifestyle variables, such as age, sex,
blood pressure, cholesterol levels, and exercise data. The
detailed evaluation report presents model performance using
metrics like precision, recall, F1-score, and overall accuracy.
It confirms that the system can effectively classify
hypertensive and non-hypertensive cases, providing real-time
predictive support for healthcare decision-making.

B. Model Convergence, Operation Points and Overall
Differentiation

Across five stratified runs (with a 70/15/15 split), optimized
deep models achieved robust differentiation. The best
Convolutional Neural Network (CNN) attained an accuracy of
approximately 85.2% and an AUC of approximately 0.87,
while the Long Short-Term Memory (LSTM) model
optimized with class weighting/SMOTE achieved an accuracy
of roughly 83% with a recall for hypertensive cases of
approximately 0.89. These operating points were chosen to
prioritize clinical safety (high sensitivity) while retaining
actionable precision. The Receiver Operating Characteristic
shows consistent separation from chance, with tight
confidence bands across folds, indicating stable generalization.

C. Comparative perspective and novelty

Recent applications of deep learning in predicting
cardiometabolic risk have often achieved area under the curve
(AUC) values between 0.80 and 0.90 when utilizing structured
vital signs and metabolic panel data. The performance of our
model falls within this range, with additional adjustments
made to prioritize recall. This approach aligns with the
requirements of basic healthcare screening in areas where
resources are limited. The research’s main contribution lies in
two areas: first, the establishment of a calibrated, sensitivity-
oriented operating point that ensures the detection of
hypertensive cases with minimal oversight; and second, the
development of a practical system designed to operate on
modest computing resources while maintaining transparency
through audit logs and printable reports. In contrast to earlier
research that relied mainly on uniform datasets, our approach
directly accounted for dataset shift by applying clinician-led
variable screening, capping extreme outlier values, and
refining threshold settings. These measures enhanced the
credibility and contextual relevance of the model for use in
health facilities on the Copperbelt.
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D. Practical Implications

1. Clinical use: The system can act as an early screening
tool, helping to decide which patients should receive
a follow-up blood pressure check or lifestyle advice.
The decision limits can be adjusted depending on
whether it is used for community outreach or in a
clinic.

2. Operational use: The platform provides simple
dashboards and printable summaries that work well
with current patient record systems. The speed of
predictions is sufficiently fast to match typical
waiting times in clinics.

3. Data approach: The outcomes highlight the
importance of developing structured local health
registries. Even small, carefully selected patient
groups can be utilized for transfer learning, thereby
reducing the gaps between international data and
local populations.

4. Governance: The system records both inputs and
predictions, making it possible to review decisions
and allowing health professionals to override results.
This supports accountability and ensures safe use of
Al in medical care.

E. Limitations

1. Lack of Local Structured Data: Most hospitals in the
Copperbelt Province still depend on paper-based or
inconsistent  electronic  records, limiting the
availability of structured datasets for training locally
adapted Al models [16] [17].

2. Inadequate Computational Infrastructure: Public
health facilities often lack advanced computing
resources such as GPUs or multicore CPUs. Since
deep learning relies on heavy computations, this
hardware gap constrains testing and deployment [18]
[19][20].

3. Limited Awareness and Training in Al: Clinicians
and hospital administrators in Kitwe, Ndola, and
Luanshya demonstrated limited familiarity with Al
applications in healthcare, which may reduce trust
and adoption [12] [13] [20].

4. Model Generalization Issues: While the CNN model
achieved 85.63% accuracy offline, its performance
dropped to 55.2% in live settings, reflecting
overfitting and challenges in adapting models to real-
world conditions [11], [21].

F. Summary Tables
Table 2: Dataset and split summary(pre-tuning)

ISSN :2394-2231

Subset N (record) | Hypertensive Notes

Train 20,846 20,846 Class weights/SMOTE applied on train only
Validation 4,467 4,467 Threshold calibrated for high recall

Test 5212 5212 Held out for final reporting

Table :3 Best LSTM classification metrics (test set).

Class Precision | Recall | F1-score Support
Non-hypertensive 0.85 0.80 0.83 2,319
Hypertensive 0.85 091 0.88 2,893
Overall e — Accuracy = 0.86 5212
Table 4 : Model comparison
Model Accuracy | AUC | Hypertensive | oo

Recall

Severely biased towards the

Baseline CNN (pre-tuning) | 059 054 | 000 majrt ol

Optimized CNN 085 087 | 091 Best overalldiscrimination

Preferred for high-recall triage
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Optimized LSTM 083 085 | 089-091

V. RECOMMENDATIONS

To strengthen Al-driven healthcare in Zambia, the Ministry of
Health should prioritize the digitization and centralization of
health data through a secure, anonymized national repository,
enabling hospitals to share and access structured datasets for
Al research while ensuring ethical oversight and patient
confidentiality [3] [16]. Investment in Al research
infrastructure is also critical, as public—private partnerships
and academic institutions, such as Copperbelt University,
could establish laboratories equipped with GPU-powered
servers to test and refine prototype models [18], [19], [20]. In
parallel, Al literacy programs must be introduced to train
clinicians on the basics of Al, model interpretability, and
integration into routine practice, ensuring long-term adoption
and trust [12] [13] [20]. To address the limited availability of
large datasets, researchers should leverage transfer learning by
adapting pre-trained models to local settings using smaller,
curated samples [7], [18]. Continuous validation through
longitudinal studies with real patient data will further enhance
generalization and capture unique local risk factors such as
environment and lifestyle [11], [14]. Finally, future system
iterations should explicitly address bias and class imbalance
by using augmentation, resampling, or ensemble methods,
thereby ensuring fair and reliable predictions [5] [6][15]

VI. FUTURE WORK

Future work will focus on designing a locally curated dataset
that captures demographic, clinical, and lifestyle factors
relevant to hypertension in Zambia [6], [10]. This will involve
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strengthening health registries and collecting structured data
from clinics to ensure representative coverage of the
population [11] [13]. Once established, the dataset will
support the training of advanced deep learning models,
including convolutional and recurrent architectures, to capture
complex medical patterns [5], [18]. Further studies will
explore the use of transfer learning to adapt international
models to local contexts, reducing domain gaps [7] [19].
Implementation strategies will focus on low-resource clinical
settings, where lightweight models and optimized inference
speed are crucial [12] [20]. Integration with e-health platforms
will be pursued to provide clinicians with real-time decision
support tools [3], [16]. Additional research will also examine
governance mechanisms, including audit trails and clinician
overrides, to ensure safety and accountability [4] [15].
Collectively, these future directions will contribute to the
development of sustainable, Al-driven healthcare solutions for
hypertension management in Zambia...

VII. CONCLUSION

The research demonstrates that a deep learning—based
hypertension prediction system can operate reliably in a low-
resource context, with optimized models achieving high
discrimination and clinically preferable sensitivity for
hypertensive cases, thereby enabling earlier case detection,
targeted confirmatory measurements, and more -efficient
allocation of limited primary-care resources. Its importance
lies in moving routine care from reactive treatment toward
proactive, data-informed prevention through a modular client—
server workflow that delivers real-time risk scores, printable
summaries, and an auditable trail suitable for integration into
outpatient intake and follow-up. At the same time, several
limitations temper generalization, including reliance on non-
local training data, modest computational capacity in public
facilities, limited practitioner familiarity with artificial
intelligence, and performance gaps observed during initial live
tests. The work is highly relevant to health systems in Zambia
and similar settings, where structured registries are scarce, yet
the burden of hypertension is rising. It provides a practical
pathway for embedding prediction into everyday care without
disrupting existing processes. Immediate applications include
triage lists for community screening, clinic-side decision
support that privileges high recall to reduce missed cases, and
standardized reporting that supports monitoring and quality
improvement. To strengthen impact, the research recommends
curating and maintaining structured local datasets, adopting
transfer learning and periodic model recalibration to local case
mix, conducting prospective utility and safety evaluations,
investing in lightweight acceleration and secure data
infrastructure, and delivering targeted training for clinicians
and administrators alongside transparent governance and
privacy safeguards, so that the system evolves into a
trustworthy, scalable tool for early hypertension detection and
sustained cardiovascular risk reduction without switching
between tools. Participants benefited from interactive
problem-solving, instant feedback, and the opportunity to
experiment within a supportive digital environment,
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highlighting the potential of such systems to bridge the gap
between theoretical instruction and practical application in
computer science education.
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