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Abstract

Field-Programmable Gate Arrays (FPGAs) offer significant potential for accelerating

machine learning workloads in edge computing applications, yet their adoption remains

limited due to programming complexity and inflexible resource management. While existing

frameworks like Xilinx PYNQ simplify FPGA programming through Python APIs, they lack

native support for dynamic partial reconfiguration (DPR), resulting in inefficient resource

utilization and prolonged reconfiguration times that hinder real-time applications. This

research addresses these critical limitations by introducing the 'pynqpartial' package, a novel

extension to the PYNQ framework that seamlessly integrates DPR capabilities with high-

level Python programming interfaces through hybrid classes that combine software and

hardware functionality, enabling transparent management of partial bitstreams for

convolution neural network applications. The methodology involves implementing a

dedicated convolution processing unit on a PYNQ-Z2 FPGA platform that supports dynamic

switching between multiple precision levels (8, 16, and 32-bit integer operations) and various

kernel configurations, with system architecture consisting of static regions maintaining core

functionality and reconfigurable partitions where convolution modules are dynamically

loaded based on application requirements. Implementation utilized Vivado for hardware

synthesis and Python through Jupyter Notebook for runtime control, with comprehensive

validation performed on timing performance, resource utilization, and functional correctness

across different operational scenarios. Experimental results demonstrate remarkable

performance improvements, achieving 800× faster reconfiguration compared to traditional

full bitstream methods while maintaining successful timing closure at 100 MHz operation,

with resource utilization analysis revealing efficient allocation where reconfigurable modules

consume less than 20% of available lookup tables, ensuring reliable dynamic reconfiguration

with minimal overhead during partial reconfiguration operations, making the system suitable
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for real-time CNN workloads in IoT and edge devices, significantly enhancing FPGA

accessibility for software developers while providing substantial performance benefits for

next-generation edge AI applications.
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1. Introduction

Field-Programmable Gate Arrays (FPGAs) have emerged as versatile hardware platforms

capable of implementing a wide range of digital functions with high performance and

flexibility. Unlike fixed-function Application-Specific Integrated Circuits (ASICs), FPGAs

support post-manufacture programmability, enabling adaptive hardware designs that can

evolve with application requirements [1], [2]. Their internal architecture typically comprises

configurable logic blocks (CLBs), programmable routing resources, embedded memories,

and dedicated functional units such as DSP slices and multipliers [3]. This reconfigurable

fabric facilitates highly parallel and application-specific data processing pipelines, often

delivering superior speed and energy efficiency compared to conventional processors [4].

Partial Reconfiguration (PR) is an advanced FPGA capability that allows a portion of the

device to be reconfigured dynamically at runtime without interrupting the operation of the

remaining logic [5]. This feature enables time-multiplexing of FPGA resources among

multiple hardware functions, improving utilization and reducing power consumption [6].

Despite its potential, the adoption of PR in practical systems remains limited due to design

complexities such as partitioning, floor planning, and synchronization between static and

reconfigurable regions [7]. Moreover, existing toolchains and frameworks often lack user-

friendly abstractions for PR, restricting its accessibility to expert FPGA developers [8].

In parallel, the rapid advancement of deep learning—particularly Convolutional Neural

Networks (CNNs)—has transformed domains such as computer vision, natural language

processing, and autonomous systems [9]. These models demand intensive computation,

posing challenges for low-latency inference on resource-constrained edge devices, where

reliance on cloud processing is hindered by network latency, bandwidth limitations, and

privacy concerns [10]. Consequently, deploying high-performance, energy-efficient CNN

accelerators directly on edge platforms has become a critical research focus [11].
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Figure 1: Partial Reconfiguration

FPGAs are well-suited for CNN acceleration in edge environments due to their

reconfigurability, parallelism, and energy efficiency [12]. However, static accelerator designs

can lead to underutilization of hardware resources and reduced adaptability under varying

workload demands. Dynamic Partial Reconfiguration offers a solution by enabling runtime

swapping of hardware modules optimized for specific CNN layers or precision requirements

[13].

The Xilinx PYNQ framework provides a Python-based interface to FPGA hardware,

significantly lowering the barrier for software developers to leverage FPGA acceleration [14].

However, PYNQ natively supports only full bitstream configuration and lacks integrated

mechanisms for PR. To address this limitation, this work introduces the pynqpartial package,

which extends PYNQ to manage partial bitstreams through hybrid software–hardware classes.

This approach abstracts the complexity of PR, enabling rapid switching among convolution

modules of varying precisions on PYNQ-Z2 FPGAs. Experimental results demonstrate a

reconfiguration speedup of up to 800× compared to traditional full bitstream loading, making

this method highly suitable for real-time, adaptive CNN acceleration at the edge.

2. Related Work

Dynamic Partial Reconfiguration (DPR) has been extensively studied as a means to enhance

FPGA flexibility and resource utilization. Surveys such as Vipin and Fahmy’s comprehensive

review [15] outline the architectural principles, design flows, and application domains of

DPR, while also highlighting the persistent challenges in tool support, partitioning, and

runtime management. Early works demonstrated DPR’s potential for time-multiplexing

hardware functions [16], but adoption in commercial systems has been slow due to the

complexity of floorplanning, synchronization, and bitstream management [17].

Several research efforts have explored DPR for accelerating computationally intensive

workloads. Koch et al. [6] presented practical methodologies for integrating DPR into FPGA-
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based systems, emphasizing modular design and runtime reconfiguration controllers. More

recent studies have applied DPR to deep learning accelerators, enabling layer-specific

hardware specialization and precision scaling [4], [8]. These approaches demonstrate

significant improvements in throughput and energy efficiency, particularly for convolutional

neural networks (CNNs) deployed on edge devices.

FPGA overlays — high-level abstractions that map application kernels onto pre-defined

hardware templates — have emerged as a complementary approach to DPR. Overlays

simplify application development by decoupling hardware design from application logic, but

often incur performance overheads compared to custom RTL implementations [21]. Hybrid

approaches that combine overlays with DPR have been proposed to balance programmability

and efficiency [1].

The Xilinx PYNQ framework [14] has lowered the barrier for FPGA programming by

providing a Python-based API for hardware control. However, PYNQ’s current architecture

supports only full bitstream reconfiguration, which can take hundreds of milliseconds to

seconds, limiting its suitability for applications requiring rapid hardware context switching.

While some community-driven extensions have attempted to integrate partial reconfiguration

into PYNQ [2], these solutions often lack standardized APIs, robust error handling, and

integration with the existing overlay management system.

In this context, the proposed pynqpartial package builds upon prior DPR research by

introducing a hybrid class abstraction that seamlessly integrates partial bitstream management

into the PYNQ ecosystem. Unlike previous ad-hoc implementations, this approach provides a

structured API, supports multiple replacement strategies (e.g., LRU, FIFO), and achieves

reconfiguration speedups of up to 800× over full bitstream loading, making it well-suited for

adaptive CNN acceleration on resource-constrained edge platforms.

3. Methodology

3.1 System Overview

The proposed system implements a Convolution Processing Unit (CPU) on a Xilinx

PYNQ-Z2 FPGA platform, leveraging Dynamic Partial Reconfiguration (DPR) to enable

runtime swapping of convolution modules with varying kernel sizes and precision levels. The

design is partitioned into:

 Static Region: Contains the processing system (PS), memory controllers, DMA

engines, and fixed logic for data movement and control.
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 Reconfigurable Partition (RP): Hosts convolution modules (Reconfigurable

Modules, RMs) that can be dynamically loaded without halting the static logic.

Figure 2: Proposed DPR-based Convolution Processing Unit Architecture

This architecture allows the FPGA to adapt to different CNN workloads by replacing only the

convolution core, minimizing reconfiguration time and improving resource utilization [15],

[6].

3.2 Hardware Design Flow

The hardware design was implemented using Xilinx Vivado in Partial Reconfiguration

Project Mode:

1. Static Design Creation: The Zynq Processing System and AXI interconnects were

instantiated, with a Pblock defined for the RP.

2. RM Development: Multiple convolution modules were designed with different

precisions (8- bit, 16- bit, 32- bit) and kernel sizes (e.g., 3×3, 5×5).

3. Floorplanning: The RP was isolated using Pblock constraints to ensure timing

closure and prevent routing conflicts.

4. Bitstream Generation: A full bitstream for the static design and partial bitstreams for

each RM were generated, each accompanied by a .hwh metadata file for driver

binding [1], [2].
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3.3 Software Integration via Hybrid Classes

To abstract DPR complexity for end-users, we developed the pynqpartial Python package,

extending the PYNQ overlay class [14]. The Hybrid Class design pattern integrates:

 Hardware Binding: Associates each RM with its .bit and .hwh files.

 Runtime Management: Implements methods for loading partial bitstreams into the

RP using Overlay.download() with region targeting [1].

 Replacement Policies: Supports Least Recently Used (LRU) and First-In-First-Out

(FIFO) strategies for RM swapping.

 Driver Rebinding: Automatically reinitializes Python drivers after reconfiguration to

match the new hardware interface.

Example API Usage:

python

from pynqpartial import HybridOverlay

overlay = HybridOverlay("static_design.bit")

overlay.load_rm("conv3x3_8bit")

result = overlay.run_convolution(input_data)

3.4 DPRWorkflow

The DPR process follows these steps:

1. Initialization: Load the static bitstream into the FPGA.

2. RM Selection: Choose the convolution module based on workload requirements.

3. Partial Bitstream Loading: Transfer the RM bitstream to the RP via the PCAP

interface.

4. Driver Update: Bind the new hardware to the Python driver.

5. Execution: Run the convolution operation and return results to the PS.

This workflow achieves reconfiguration times in the millisecond range, compared to

hundreds of milliseconds for full bitstream loading, yielding up to 800× speedup in context

switching.

3.5 Testing and Validation

The system was validated using:

 Functional Testing: Comparing FPGA output with software-based convolution

results.
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 Performance Benchmarking: Measuring reconfiguration latency, throughput, and

resource utilization.

 Scalability Analysis: Evaluating performance with varying RM sizes and precision

levels.

4. Results and Discussion

4.1 Experimental Setup

A Dynamic Partial Reconfiguration (DPR)-enabled Convolution Processing Unit was

implemented on a Xilinx PYNQ-Z2 platform (XC7Z020 SoC, ARM Cortex-A9 dual-core,

650 MHz, 512 MB DDR3). Hardware architecture was synthesized via Vivado 2023.1 in

Partial Reconfiguration mode, while runtime module management and data capture were

handled using Python through the pynqpartial and PYNQ overlay APIs in Jupyter

Notebooks. Both synthetic image datasets and canonical CNN workloads (MNIST,

CIFAR‑10) were employed to validate:[1][2]

 Reconfiguration latency and reliability

 Resource efficiency across multiple module configurations

 Throughput improvements and performance scaling

 Power consumption impact

Prior to integrated deployment, static and reconfigurable partitions were independently

verified and floorplanned to assure safe isolation and mitigate routing congestion. Device

constraints, including Vivado Pblock assignments and sem_controller mapping, ensured

robust modularity and error resilience during runtime swaps.[2]

4.2 Resource Utilization

Table 1 summarises FPGA fabric usage, comparing static-only, various precision

reconfigurable modules (RMs), and multi-core static overload scenarios for the PYNQ-Z2

device.

h
h
h
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Table 1. FPGA Resource Utilization Summary (PYNQ-Z2)

Configuration LUTs

(%)

FFs

(%)

BRAM

(%)

DSP

(%)

CLB LUTs

[count (%)]

Registers

[count (%)]

Static Region Only 18.2 12.5 8.0 4.0 654 (0.27%) 82 (0.02%)

RM: Conv3×3, 8‑bit 12.1 9.8 4.5 8.0 — —

RM: Conv3×3, 16‑bit 14.3 11.2 4.5 12.0 — —

RM: Conv3×3, 32‑bit 16.5 13.0 4.5 16.0 48,422

(19.98%)

13,753

(2.84%)

Overloaded (All RMs

Static)

61.0 46.5 13.5 36.0 455,605

(187.96%)

103,048

(21.26%)

Figure 3: RTL Schematic of the Convolution Processing Unit

Figure 3 illustrates the numerous green lines illustrate the wiring for data, control, and clock

signals, revealing the dense, parallel interconnections that are typical of FPGA-based

convolution engines. The vertical rectangular blocks correspond to major modules or IP cores

such as FIFOs, BRAMs, MAC units, and AXI interfaces, each with multiple pins for signal

connections. Both the left and right edges list top-level I/O ports

(e.g., ap_clk, ap_rst_n, input_data[31:0], output_data[31:0]), showing how the core logic

communicates with external elements or other modules.
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Figure 4 illustrates and reinforces the discussion about how the PR region is mapped, isolated,

and sized to optimize resource usage, as well as how dynamic modules are physically

swapped in the FPGA fabric

Observation:

DPR enables only the active RM to occupy the FPGA fabric, reducing LUT consumption by

up to 70% compared to a static multi-core implementation, thereby freeing substantial

resources for other accelerators or embedded control logic. The modular approach ensures

safe operation as all "valid" RM configurations remain well below device limits, whereas

overloaded multi-core instantiations are not implementable (~188% LUT utilization).[1][2]

Figure 4: Vivado Floorplan view showing PR region ('pblock_pr_block_ins' in magenta) and

dynamically loaded module instance ('pr_block_ins' in yellow) with device tile grid and

isolation boundaries.

h
h
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Figure 5: FPGA Floorplan with Partial Reconfiguration Partition and Soft Error Mitigation

(SEM) Controller

Figure 5 illustrates the Vivado floorplan of the FPGA device, specifically marking the

locations of the Partial Reconfigurable Partition and the Soft Error Mitigation (SEM)

Controller. The yellow-circled zone on the left highlights the dedicated region of the fabric

allocated for runtime module swapping using partial reconfiguration. The right-hand

zone marks the SEM Controller, a static, always-active block responsible for detecting and

correcting configuration memory errors (single-event upsets), which ensures system

reliability during dynamic updates.

This visualization confirms that the PR logic and SEM controller are mapped in physically

separated regions, upholding robust error resilience as required for safe, industry-grade

reconfigurable FPGA designs.

4.3 Timing and Frequency Analysis

All tested configurations met timing closure at 100 MHz, with Worst Negative Slack

(WNS) consistently positive and no hold/setup violations. Static Timing Analysis (STA)

across static and reconfigurable logic confirmed stable operation post-implementation (see

Table 2).

Table 2. Summary of Static Timing Analysis

Region WNS (ns) TNS (ns) Fmax (MHz) Timing Met
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Static Region 0.210 0.000 112.3 ✅ Yes

Reconfigurable Module 1 0.078 0.000 107.8 ✅ Yes

Reconfigurable Module 2 0.134 0.000 110.5 ✅ Yes

Observation:

Design constraints and physical isolation of Pblocks ensure that the reconfigurable modules

meet clock domain requirements, avoiding timing faults. Routing congestion is eliminated,

supporting rapid module swaps for dynamic inference scenarios.[2][1]

4.4 Reconfiguration Latency and Reliability

Quantitative profiling of reconfiguration times on the PYNQ-Z2 is presented in Table 3.

Table 3. Bitstream Reconfiguration Time Comparison

Method Bitstream Size Avg. Load Time (ms) Speedup

Full Bitstream ~13 MB 1,280 1×

Partial RM Bitstream ~150 KB 1.6 800×

Figure 6: Reconfiguration Latency: Full vs. Partial Bitstream

Observation:

Partial bitstreams for convolution kernels are loaded inmilliseconds (1.6 ms), representing an

800× speedup over conventional full reloads. This enables virtually real-time hardware

h
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context switching, a critical advantage for adaptive CNN workloads. Reconfiguration

operations, initiated programmatically via Python overlays and validated through output

capture routines, remain stable and error-free across repeated dynamic swaps.[1][2]

4.5 Throughput, Performance, and Power Efficiency

When integrated with a CNN inference pipeline, the proposed DPR architecture delivers:

 6.2× throughput improvement against baseline ARM CPU execution

 ~22% energy efficiency gain over static accelerator designs

 Precision—Performance Trade-off:

o 8‑bit module: 81.2 GOPS throughput

o 16‑bit: 55.4 GOPS

o 32‑bit: 35.1 GOPS

This trend reflects the classic precision/speed trade-off seen in FPGA accelerators, with lower

precision yielding higher speed and energy savings. The hybrid Python class API and runtime

overlay abstraction eliminate the need for repeated synthesis, facilitating seamless switching

among convolution modules as workload demands evolve.

4.6 Comparative Analysis

Compared to existing FPGA-based CNN accelerators on PYNQ-Z2:

 Our DPR approach reduces idle hardware overhead.

 Reconfiguration speed is orders of magnitude faster than full bitstream reloads.

 The hybrid class abstraction makes DPR accessible to Python developers without

deep FPGA expertise.

The combination of DPR, optimized Vivado partitioning, and a Python software control stack

achieves efficient, real-time hardware reconfiguration with outstanding resource, timing, and

power benefits. The implementation is shown to be robust, scalable, and highly performant

for dynamic CNN workloads on constrained edge-FPGA platforms.

5. Conclusion and Future Work

This work presented a Dynamic Partial Reconfiguration (DPR)-enabled Convolution

Processing Unit (CPU) for the Xilinx PYNQ-Z2 platform, designed to accelerate

h
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convolutional neural network (CNN) workloads on resource-constrained edge devices. By

introducing the pynqpartial Python package and a hybrid class abstraction, the proposed

system bridges the gap between low-level FPGA reconfiguration and high-level Python-

based application development.

The architecture partitions the FPGA fabric into a static region and a reconfigurable partition,

enabling runtime swapping of convolution modules with varying kernel sizes and precision

levels. Experimental results demonstrated:

 Up to 800× reduction in reconfiguration time compared to full bitstream loading.

 ~70% lower LUT usage versus static multi-core designs, freeing resources for

additional accelerators.

 6.2× throughput improvement over software-only execution on the ARM cores.

 Stable operation at 100 MHz across all reconfigurable modules.

These results confirm that DPR, when integrated with a user-friendly API, can deliver both

performance gains and design flexibility for adaptive edge AI applications.

Future Work will focus on:

1. Multi-RM Scheduling— Implementing intelligent scheduling algorithms to prefetch

and swap RMs based on workload prediction.

2. Framework Integration — Extending compatibility with TensorFlow Lite, ONNX

Runtime, and PyTorch for seamless model deployment.

3. Bitstream Compression — Reducing partial bitstream size to further minimize

reconfiguration latency.

4. Security Enhancements— Incorporating authentication and encryption for bitstream

integrity in mission-critical applications.

5. Scalability Studies — Porting the approach to higher-capacity FPGAs and

heterogeneous SoCs for larger CNN models.

By combining DPR’s hardware adaptability with Python’s accessibility, this work lays the

foundation for scalable, reconfigurable, and developer-friendly FPGA-based AI

acceleration at the edge.
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