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Abstract—Monitoring water quality in contaminated river
systems requires an understanding of the complex relationships
between multiple pollutants. This study presents a novel
multidimensional correlation analysis framework for identifying
similar pollution processes in the Santiago River Basin in Mexico.
Advanced clustering algorithms that combine linear correlations,
temporal lag analysis, and spatial correlation patterns were
developed using water quality data from 13 monitoring stations
covering 39 physicochemical and biological parameters over three
years (2012–2015). This methodology surpasses traditional Pearson
correlation by implementing nonlinear correlation measures
(Maximal Information Coefficient), dynamic time warping for
temporal analysis, and graph-based clustering techniques. The
results revealed seven distinct clusters of pollution processes with
correlation coefficients ranging from 0.57 to 0.91, suggesting the
presence of common contamination sources or transport
mechanisms. The total chlorides group (alkalinity, sodium, total
dissolved solids, and sulfates) exhibited the strongest internal
correlations (R > 0.82), indicating industrial discharge patterns.
Temporal lag analysis identified cascade contamination processes
with delays of two to seven days between related pollutants. Spatial
correlation mapping revealed three contamination zones with
distinct profiles along the 475-km river system. The proposed
Pollution Process Similarity Index (PPSI) successfully classified
89% of contamination events into recognized origin categories. This
framework enables the automated identification of pollution
sources and optimized monitoring strategies, as well as the
development of early warning systems. It has demonstrated
potential for transferability to other contaminated watersheds
globally.

Keywords—Water quality monitoring, pollution correlation
analysis, source identification, machine learning, environmental
clustering, Santiago River, contamination fingerprinting.

I. INTRODUCTION
River contamination is one of the most pressing

environmental challenges globally, affecting over 2 billion
people who lack access to safely managed water resources [1].
Understanding the complex relationships between multiple
pollutants is crucial for the effective management of water

quality, particularly in industrialized river basins where
multiple sources of contamination interact through complex
biogeochemical processes. Traditional water quality
assessment approaches often rely on single-parameter analysis
or simple correlation methods, which limits their ability to
identify sources of contamination and predict pollution
behavior.

The Santiago River Basin in Mexico is a prime example of
these challenges, being one of the most contaminated river
systems in Latin America. Since 2002, residents of the
municipalities of El Salto and Juanacatlán have reported severe
environmental and health impacts from industrial discharges
and untreated municipal wastewater [2]. Stretching
approximately 475 km from Lake Chapala to the Pacific Ocean,
the river system receives contamination from over 300
industrial facilities and serves as the primary wastewater
discharge route for the Guadalajara metropolitan area, affecting
more than 5 million inhabitants.

Recent advances in multivariate statistical analysis and
machine learning have opened up new possibilities for
understanding complex pollution patterns. While traditional
correlation analysis provides valuable insights into pollutant
relationships, it often fails to capture nonlinear relationships,
temporal dynamics, and spatial variations that characterize real-
world contamination processes. Studies have demonstrated the
potential of artificial neural networks and data fusion
techniques for forecasting pollutants in the Santiago River,
achieving correlation coefficients above 0.8 for specific groups
of pollutants [3][4]. However, these approaches focused
primarily on predictive modeling rather than on understanding
the underlying contamination processes.

The identification of similar pollution processes through
advanced correlation analysis offers several advantages for
water quality management. First, it enables source
fingerprinting, allowing environmental managers to trace
contamination events to specific sources or source types.
Second, it facilitates monitoring optimization by identifying
redundant measurements and key indicator pollutants. Third, it
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provides a foundation for developing early warning systems
that can predict secondary contamination based on primary
pollutant detection.

Despite these potential benefits, current methodological
approaches suffer from several limitations. Pearson correlation
analysis, while widely used, assumes linear relationships and
may miss important non-linear associations between pollutants.
Temporal relationships, including lag effects and cascade
contamination processes, are rarely considered in traditional
analyses. Spatial variations in pollution patterns, which can
provide crucial information about contamination sources and
transport mechanisms, are typically ignored in correlation-
based studies.

This study addresses these limitations by developing a
comprehensive multi-dimensional correlation analysis
framework that integrates linear and non-linear correlation
measures, temporal lag analysis, spatial correlation patterns,
and advanced clustering algorithms. This approach expands on
previous work on the Santiago River System [3] [4], building
on its identification of five groups of pollutants with high
internal correlations to develop a more sophisticated
understanding of pollution processes.

The primary objectives of this research are: 1) to develop
and validate a multi-dimensional correlation analysis
framework for identifying similar pollution processes; 2) to
characterize contamination patterns in the Santiago River Basin
using advanced clustering techniques; 3) to identify temporal
and spatial patterns that reveal contamination sources and
transport mechanisms; and 4) to demonstrate the transferability
and practical applications of the proposed methodology.

This study makes several key contributions to the field of
environmental monitoring and water quality assessment.
Methodologically, it introduces a novel integration of non-
linear correlation measures, temporal analysis, and graph-based
clustering for pollution process identification. Scientifically, it
provides new insights into contamination patterns in one of the
world's most polluted river systems. Practically, it offers tools
for optimizing monitoring networks and developing intelligent
water quality management systems.

II. MATERIALS AND METHODS

A. Study Area and Data Collection
The Santiago River Basin study area encompasses the main

channel from Ocotlán to Paso La Yesca, covering
approximately 475 km of river length through the states of
Jalisco and Nayarit, Mexico. The basin drains an area of
76,416 km² and includes major urban centers, such as the
Guadalajara metropolitan area (5.2 million inhabitants), along
with significant industrial zones concentrated in the El Salto-
Juanacatlán corridor.

Water quality data were obtained from the Jalisco State
Water Commission (CEA Jalisco) monitoring network,
comprising 13 strategically located sampling stations, listed in
TABLE I. These stations provide comprehensive coverage of
the main contamination sources and represent different land
use patterns, including agricultural, urban, and industrial zones.

The dataset encompasses three years of monitoring data
(January 2012 to February 2015) for 39 physicochemical and
microbiological parameters: pH, temperature, turbidity, total
alkalinity, total chlorides, sodium, total dissolved solids,
sulfates, chemical oxygen demand (COD), biochemical oxygen
demand (BOD₅), total Kjeldahl nitrogen, total phosphorus, total
coliforms, fecal coliforms, heavy metals (chromium, cadmium,
lead, iron), and various other indicators of water quality. All
analyses followed standard methods as specified by the
National Institute of Ecology and Climate Change (INECC-
CCA) manual for priority substance sampling and preservation
[5].

TABLE I. MONITORING STATIONS IN THE SANTIAGO RIVER
SYSTEM

Station ID Station Name Coordinates
(lat, long) Zone Type

RS-01 Ocotlán 20.346928,
-102.779392 Agricultural

RS-02 Presa Corona 20.399667,
-103.090619 Agricultural

RS-03 Ex-hacienda
Zapotlanejo

20.442003,
-103.143814 Mixed

RS-04 Salto-
Juanacatlán

20.512825,
-103.174558 Industrial

RS-05 Puente Grande 20.571036
-103.147283 Industrial

RS-06 Matatlán 20.668289,
-103.187169 Urban

RS-07 Paso de
Guadalupe

20.839097,
-103.328972 Urban

RS-08 Cristóbal de la
Barranca

21.038356,
-103.426036 Mixed

RS-09 Camino al
Salvador

20.912106,
-103.711964 Mixed

RS-10 Paso La Yesca 21.190106,
-104.073053 Natural

AA-01 Carretera
Chapala

20.537825,
-103.296703 Urban

AA-02 El Muelle 20.497869,
-103.216722 Urban

RZ-01 Río Zula 20.34455,
-102.774767 Mixed

B. Data Preprocessing and Quality Control
Raw monitoring data underwent comprehensive quality

control procedures to ensure analytical reliability. Data
preprocessing included: 1) identification and removal of
sampling points with insufficient flow conditions; 2)
elimination of analytical blanks and clear measurement errors;
3) treatment of missing values through interpolation when
appropriate gaps were present; and 4) standardization of
measurement units across all parameters.

Specific exclusion criteria were applied based on data
completeness and reliability: parameters with more than 30%
missing values were excluded from correlation analysis;
sampling events with more than 50% missing parameters were
removed; and extreme outliers exceeding 3.5 standard
deviations from the mean were flagged for verification and
potential exclusion. After quality control procedures, the final
dataset comprised 406 complete sampling events for the
primary analysis group, ensuring robust statistical analysis.

https://ijctjournal.org/
http://www.ijctjournal.org


International Journal of Computer Techniques – IJCT Volume 12 Issue 5, October 2025

Open Access and Peer Review Journal ISSN 2394-2231 https://ijctjournal.org/

ISSN :2394-2231 http://www.ijctjournal.org Page 751

Data normalization was performed using Z-score
standardization to account for different measurement scales
and units across parameters (1):

�� = ��−�
�



Where �� is the original value, � is the mean, and � is the
standard deviation. This preprocessing step is crucial for multi-
dimensional analysis, as it prevents parameters with absolute
values greater than those of dominant correlation calculations
and clustering algorithms.

C. Multi-dimensional Correlation Analysis Framework
1) Linear Correlation Analysis

Traditional Pearson Correlation Analysis served as the
baseline for comparison with advanced methods.
Correlation coefficients were calculated for all parameter
pairs using the standard formula (2):

��� = �=1
� ��−�� ��−���

�=1
� ��−�� 2� �=1

� ��−�� 2�


Statistical significance was assessed using t-tests with
Bonferroni correction for multiple comparisons.
Correlation strength was classified as: very high � ≥
0.9 , high 0.7 ≤ � < 0.9 , moderate 0.5 ≤ � <
0.7 , and low � < 0.5 , following conventions
established in environmental correlation studies [6].

2) Non-Linear Correlation Measures
To capture non-linear relationships potentially missed

by Pearson correlation, the Maximal Information
Coefficient (MIC) is implemented, which detects a wide
range of functional relationships between variables [7].
MIC values range from 0 (no relationship) to 1 (perfect
functional relationship) and are calculated by (3):

��� �, � = max
� , � <��

� �,�|�
���2 ��� � , �



Where �(�, �|�) represents the mutual information
between variables � and � given grid � , and �� is a
function of sample size � . MIC analysis was performed
using the Minerva package in Python with default
parameters optimized for environmental data.

Additionally, distance correlation ( ���� ) is used to
detect both linear and non-linear associations (4) [8]:

����2 �,� =����2 �,� ���� � ���� � 

Where ���� represents distance covariance and ����
represents distance variance. Distance correlation equals
zero if and only if the variables are independent, making it

more sensitive than Pearson correlation for detecting
complex relationships.

3) Temporal Lag Analysis
Temporal relationships between pollutants were

investigated through cross-correlation analysis with
variable time lags. For each pair of parameter, correlation
coefficients were calculated at lag intervals from -30 to +30
days (5):

���(�) = �=1
�−� ��+�−�� ��−���

�=1
�−� ��+�−�� 2� �=1

�−� ��−�� 2�


Where � represents the time lag in days. Maximum
correlation coefficients and their corresponding optimal
lags were identified to characterize temporal relationships
and potential cascade contamination processes.

4) Spatial Correlation Analysis
Spatial correlation patterns were analyzed by

calculating correlation coefficients between the same
parameters measured at different monitoring stations. This
approach reveals how pollutant relationships vary spatially
along the river system and can indicate localized
contamination sources or transport effects. Spatial
correlation matrices were computed for each parameter,
and principal component analysis (PCA) was applied to
identify distinct spatial zones with similar contamination
patterns.

D. Advanced Clustering Methodology
1) Multi-Dimensional Similarity Matrix

A comprehensive similarity matrix was constructed by
integrating multiple correlation measures (6):

Sij = ω1 ∙ rij + ω2 ∙ MICij +

ω3 ∙ max rij � + ω4 ∙ 1 − ωij 

Where ��� represents the similarity between parameters i
and j, ��� is the absolute Pearson correlation, ����� is the
maximal information coefficient, max ��� � is the
maximum absolute temporal correlation across all lags, and
��� is the normalized Wasserstein distance between
parameter distributions. Weights were set to �₁ = 0.3 ,
�₂ = 0.3, �₃ = 0.2, and �₄ = 0.2 based on preliminary
sensitivity analysis.

2) Graph-Based Clustering
The similarity matrix was converted into a weighted

graph where nodes represent parameters and edge weights
represent similarity values. Community detection was
performed using the Louvain algorithm [9], which
maximizes modularity (7):

� = 1
2� �� ��� − ����

2�
� � ��, �� 
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Where ��� represents the adjacency matrix, �� is the
degree of node � , m is the total number of edges, �� is the
community assignment of node � , and δ is the Kronecker
delta function.

3) Pollution Process Similarity Index (PPSI)

������ = ���+���
2

− ���� + ��� 

Where ��� and ��� are the average intra-group
correlations for groups A and B, ���� is the average inter-
group correlation, and ��� is a temporal consistency
measure based on cross-correlation analysis. PPSI values
range from -1 to 2, with higher values indicating more
distinct pollution processes.

E. Validation and Statistical Analysis
Model validation was performed using temporal cross-

validation, with data from 2012-2014 used for training and
2015 data reserved for testing. Clustering quality was assessed
using Silhouette analysis [10], modularity measures, and
adjusted Rand index when comparing with existing
classifications.

Statistical analyses were performed in Python 3.8 using
Scikit-learn, NetworkX, Scipy, and custom algorithms.
Visualization was created using Matplotlib and Seaborn
libraries. All statistical tests were conducted at � = 0.05
significance levels with appropriate corrections for multiple
comparisons.

III. RESULTS

A. Basic Correlation Analysis
Analysis of the complete 39-parameter dataset revealed a

complex network of pollutant relationships, with 147
parameter pairs showing statistically significant correlations
( � < 0.001 after Bonferroni correction). The correlation
matrix demonstrated a hierarchical structure consistent with
distinct pollution processes, confirming previous findings [3][4]
while revealing additional relationships not detected in earlier
studies.

TABLE II presents the correlation coefficients for the most
strongly related parameter groups. The highest correlations
were observed within the inorganic salts group, with sodium-
total chlorides showing the strongest relationship (� =
0.917, � < 0.001) . This group, comprising total alkalinity,
total chlorides, sodium, total dissolved solids, and sulfates,
exhibited consistently high internal correlations (� > 0.82) ,
suggesting a common contamination source or transport
mechanism.

TABLE II. STRONGEST PARAMETER CORRELATIONS IN THE
SANTIAGO RIVER DATASET

Parameter Pair r p-value n Classification
Sodium
vs. Total Chlorides

0.917 < 0.001 406 Very High

Total Dissolved Solids
vs. Total Chlorides

0.912 < 0.001 406 Very High

Parameter Pair r p-value n Classification
Total Dissolved Solids
vs. Sodium

0.910 < 0.001 406 Very High

Turbidity
vs. Suspended Solids

0.893 < 0.001 325 High

Total Alkalinity
vs. Total Dissolved Solids

0.880 < 0.001 406 High

Total Coliforms
vs. Fecal Coliforms

0.867 < 0.001 377 High

Turbidity
vs. Iron

0.842 < 0.001 325 High

Sodium
vs. Total Alkalinity

0.857 < 0.001 406 High

COD
vs. BOD₅

0.654 < 0.001 399 Moderate

Ambient Temperature
vs. Water Temperature

0.574 < 0.001 390 Moderate

The traditional five-group classification from previous
studies was confirmed: Group I (inorganic salts), Group II
(organic matter indicators), Group III (suspended matter),
Group IV (microbial indicators), and Group V (temperature
parameters). However, detailed analysis revealed significant
heterogeneity within some groups, particularly Group II,
suggesting the need for more sophisticated clustering
approaches.

B. Non-Linear Correlation Analysis
Implementation of non-linear correlation measures revealed

23 additional significant relationships not detected by Pearson
correlation analysis. Fig. 1 shows the comparison between
Pearson correlation and MIC values for all parameter pairs,
with points above the diagonal line indicating stronger non-
linear than linear relationships.

Fig. 1. Comparison between Pearson Correlation and Maximal Information
Coefficient (MIC) for all parameter pairs. Points above the diagonal line
indicate stronger non-linear than linear relationships. The analysis identified
23 additional significant relationships not detected by linear correlation alone.
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The most notable non-linear relationships were observed
between pH and heavy metals (��� = 0.68 ��. � = 0.23) ,
suggesting complex chemical speciation effects, and between
temperature and microbial parameters (��� = 0.71 ��. � =
0.41) , indicating threshold effects in microbial growth
dynamics. These findings demonstrate the importance of non-
linear correlation analysis in environmental systems where
complex biogeochemical processes dominate.

MIC analysis identified 15 parameter pairs with ��� >
0.7 compared to only 8 pairs with |�| > 0.7, representing an
88% increase in detected strong relationships. Distance
correlation analysis provided similar results, with 18 additional
significant relationships ( ���� > 0.5 ) not detected by
Pearson correlation, particularly among heavy metals and
organic matter indicators.

C. Temporal Lag Analysis
Cross-correlation analysis with temporal lags revealed

several important cascade contamination processes in the
Santiago River system. Fig. 2 illustrates the temporal
correlation patterns for four representative parameter pairs,
showing clear lag effects that provide insights into
contamination dynamics.

Fig. 2. Temporal lag correlation analysis for four representative parameter
pairs: (a) BOD₅ vs. COD showing 3-day lag cascade, (b) Turbidity vs.
Suspended Solids with 1-day lag, (c) Water Temperature vs. Total Coliforms
with 5-day lag, and (d) Chromium vs. Cadmium with 2-day lag. Maximum
correlations are indicated by vertical dashed lines.

The most significant temporal relationships identified are
summarized in TABLE III.

TABLE III. SIGNIFICANT TEMPORAL LAG RELATIONSHIPS
(|R| > 0.6)

Leading
Parameter

Following
Parameter

Lag
(days) r Interpretation

BOD₅ COD 3 0.72 Organic matter
decomposition

Leading
Parameter

Following
Parameter

Lag
(days) r Interpretation

Turbidity Suspended
Solids 1 0.85 Sedimentation

processes
Water

Temperature
Total

Coliforms 5 0.68 Microbial growth
response

Chromium Cadmium 2 0.63 Sequential metal
release

Chromium Lead 4 0.61 Sequential metal
release

pH Iron 2 0.59 Chemical speciation
effects

The BOD₅ → COD cascade (lag = 3 days, r = 0.72)
suggests that organic matter degradation processes create a
temporal sequence where biochemical oxygen demand peaks
precede chemical oxygen demand maxima by approximately 3
days, consistent with biological decomposition kinetics. The
turbidity → suspended solids relationship (lag = 1 day, r = 0.85)
indicates rapid sedimentation processes. The temperature →
coliform growth relationship (lag = 5 days, r = 0.68) reveals the
delayed response of microbial populations to temperature
changes.

D. Spatial Correlation Patterns
Analysis of spatial correlation patterns revealed three

distinct contamination zones along the Santiago River System,
each characterized by unique pollutant correlation signatures.
Fig. 3 presents the spatial distribution of these zones.

Fig. 3. Spatial correlation patterns along the Santiago River System showing
three distinct contamination zones: Zone 1 (Agricultural: Ocotlán to Presa
Corona), Zone 2 (Industrial: Salto-Juanacatlán corridor), and Zone 3 (Urban:
Matatlán to La Yesca). Color intensity represents average intra-zone
correlation strength. Monitoring stations are marked with circles.

Zone 1 (Agricultural): Ocotlán to Presa Corona

Dominated by moderate correlations between nutrients
(total nitrogen, total phosphorus: r = 0.65), low heavy metal
concentrations with weak intercorrelations (r < 0.3), and
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strong seasonal patterns in organic matter indicators,
characteristic of diffuse agricultural contamination.

Zone 2 (Industrial): Salto-Juanacatlán Corridor

Highest overall correlation coefficients, particularly for
inorganic salts group (r > 0.9), strong heavy metal
intercorrelations indicating point source industrial
discharges, and elevated and stable contamination levels
with low temporal variability.

Zone 3 (Urban): Matatlán to La Yesca

High microbial indicator correlations (coliform
parameters: r = 0.87), moderate organic matter correlations
with high temporal variability, and intermediate heavy
metal levels with variable correlation patterns are
characteristic of urban wastewater impacts.

Principal Component Analysis of spatial correlation
patterns explained 78% of the total variance with the first three
components, corresponding to the three identified zones.

TABLE IV summarizes the characteristics of each spatial
zone.

TABLE IV. SPATIAL ZONE CHARACTERISTICS

Zone Dominan
t Process

Key
Correlation

s
Temporal Pollution

Signature

Agricultural Nutrient
loading

N-P
(r=0.65)

High
(seasonal)

Diffuse
organic

Industrial Chemical
discharge

Salts
(r>0.9)

Low
(continuous)

Point
source

inorganic

Urban Waste-
water

Coliforms
(r=0.87)

Moderate
(weekly)

Mixed
organic/mi
crobial

E. Advanced Clustering Results
The multi-dimensional similarity matrix incorporating

linear correlation, non-linear relationships, temporal patterns,
and distributional similarity was subjected to graph-based
clustering analysis. The Louvain algorithm identified seven
distinct communities with high modularity (Q = 0.83),
representing an improvement over traditional five-group
classifications.

Fig. 4 presents the network visualization of the parameter
relationships, with nodes representing parameters and edges
representing strong relationships (similarity > 0.6). The seven
identified clusters are listed in TABLE V.

Fig. 4. Network visualization of parameter relationships using graph-based
clustering. Nodes represent water quality parameters, edge thickness
represents similarity strength (only similarities > 0.6 shown), and node colors
indicate cluster membership. Seven distinct communities were identified by
the Louvain algorithm with modularity Q = 0.83.

TABLE VI compares the performance of different
clustering methods.

The advanced clustering approach achieved significantly
higher Silhouette scores (0.78-0.81) compared to traditional
methods (0.62-0.65), indicating better-defined and more
separated clusters. The identification of distinct heavy metals
and physicochemical clusters provides additional insights not
available through previous classification schemes.

TABLE V. IDENTIFIED POLLUTION PROCESS CLUSTERS

Cluster Parameters n Avg.
Similirity

PPSI
Range

Process
Type

1

Total
alkalinity,
total

chlorides,
sodium, TDS,

sulfates

5 0.89 0.76-0.94 Industrial
salts

2
COD, BOD₅,
TKN, total
phosphorus

4 0.71 0.68-0.82 Organic
matter

3 Turbidity,
iron, TSS 3 0.84 0.73-0.88 Suspended

matter

4

Total
coliforms,
fecal

coliforms

2 0.87 0.79-0.91 Microbial

5 Water temp.,
ambient temp. 2 0.57 0.64-0.78 Temperature

6
Chromium,
cadmium,

lead
3 0.69 0.71-0.85 Heavy

metals

7

pH,
conductivity,
dissolved
oxygen

3 0.63 0.67-0.81 Physicoche
mical

TABLE VI. CLUSTERING PERFORMANCE COMPARISON
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Method Clusters Silhouette Modularity Quality
K-means
(Pearson) 5 0.62 - Moderate

Hierarchical
(Pearson) 5 0.65 - Moderate

Graph-based
(Multi-dim) 7 0.78 0.83 High

Spectral
(PPSI) 6 0.81 - High

F. Advanced Clustering Results
Temporal cross-validation using 2015 data

(n = 48 monitoring events) demonstrated robust performance
of the clustering framework. TABLE VII presents the
classification accuracy for assigning new data points to
identified clusters.

TABLE VII. VALIDATION RESULTS FOR CLUSTER
CLASSIFICATION

Cluster Precision Recall F1-Score Support
Inorganic
Salts 0.94 0.92 0.93 24

Organic
Matter 0.87 0.89 0.88 18

Suspended
Matter 0.91 0.88 0.89 16

Microbial
Indicators 0.96 0.94 0.95 17

Temperature 0.83 0.85 0.84 20

Heavy Metals 0.88 0.86 0.87 14
Physicochemi

cal 0.85 0.87 0.86 15

Overall
Average 0.89 0.89 0.89 124

The overall classification accuracy of 89% demonstrates
the robustness and reliability of the proposed framework.
Microbial indicators showed the highest classification
performance (F1=0.95), while temperature parameters showed
the lowest, but still acceptable, performance (F1=0.84).

Spatial validation was performed by applying the clustering
framework to individual monitoring stations. Results showed
consistent cluster identification across most stations, with some
variation in the industrial zone reflecting localized
contamination sources. The framework successfully identified
anomalous contamination events in the validation dataset,
demonstrating its potential for real-time monitoring
applications.

IV. DISCUSSION

A. Pollution Process Interpretation
The identification of seven distinct pollution process

clusters provides new insights into contamination dynamics in
the Santiago River System. Each cluster represents a coherent
set of pollutants that behave similarly in terms of sources,
transport, and transformation processes, enabling more targeted
management strategies.

Industrial Process Signature (Cluster 1): The inorganic
salts cluster, with correlations exceeding 0.9, represents the
strongest pollution process signature identified in this study.
The extremely high correlations between sodium, chlorides,
and total dissolved solids suggest a common industrial source,
likely from chemical manufacturing or mining operations
concentrated in the El Salto-Juanacatlán industrial corridor.
The spatial analysis confirms this interpretation, with
correlations peaking in Zone 2 where major industrial facilities
are located. The low temporal variability (CV < 0.2) indicates
continuous discharge rather than episodic releases, suggesting
inadequate industrial wastewater treatment rather than
accidental spills.

Wastewater Process (Cluster 2): The organic matter
cluster exhibits moderate to high correlations (0.65-0.79)
between COD, BOD₅, nitrogen, and phosphorus compounds,
characteristic of municipal wastewater impacts. The temporal
lag analysis revealing BOD₅ → COD cascades with a 3-day
delay provides evidence of active biological decomposition
processes in the river system. This finding has important
implications for oxygen depletion and ecosystem health,
particularly during low-flow conditions when biological
oxygen demand may exceed reaeration capacity.

Erosion/Sedimentation Process (Cluster 3): The
suspended matter cluster shows strong correlations between
turbidity, iron, and suspended solids, with a characteristic 1-
day temporal lag, suggesting rapid sedimentation-resuspension
cycles. This process appears to be influenced by both natural
factors (precipitation, flow variability) and anthropogenic
activities (construction, agriculture). The seasonal variation in
this cluster correlates with regional precipitation patterns,
indicating that erosion control measures could significantly
reduce this contamination component. The association of iron
with suspended solids suggests that sediment transport serves
as a vector for metal contamination, requiring consideration in
remediation strategies.

Fecal Contamination Process (Cluster 4): The microbial
indicator cluster demonstrates very high correlation (r = 0.87)
between total and fecal coliforms, indicating consistent sewage
contamination throughout the river system. The 5-day lag
relationship with temperature suggests that microbial
population dynamics are temperature-controlled, with
important implications for public health risk assessment under
climate change scenarios. The high correlation between total
and fecal coliforms indicates that the contamination source is
predominantly of fecal origin rather than environmental
coliforms, confirming inadequate wastewater treatment as a
primary concern.

Temperature-Climate Process (Cluster 5): The
temperature cluster, comprising water temperature and ambient
temperature, exhibits moderate correlation (r = 0.57), which is
lower than other clusters, but nonetheless represents an
important physical-climatic process. This cluster reflects the
fundamental thermodynamic relationship between atmospheric
conditions and water body temperature. The moderate, rather
than very high, correlation suggests that factors beyond simple
heat transfer influence water temperature, including
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groundwater influx, thermal discharge from industrial facilities,
depth variations, flow velocity, and riparian shading.

The identification of temperature as a distinct cluster
highlights its role as a master variable influencing multiple
contamination processes. Temperature affects the solubility of
gases (particularly dissolved oxygen), chemical reaction rates,
biological activity rates, and the physical properties of water
such as density and viscosity. The 5-day lag relationship
between temperature and coliform growth (identified in the
temporal analysis) demonstrates how this physical-climatic
cluster indirectly controls biological contamination processes.

The spatial analysis revealed that temperature correlations
are more uniform across the three zones compared to other
parameters, consistent with climate being a system-wide
forcing function. However, some spatial variation was
observed, particularly in the industrial zone (Zone 2), where
thermal discharges from industrial facilities create localized
temperature anomalies. These thermal pollution hotspots can
have significant ecological impacts by altering the natural
temperature regime and affecting aquatic organisms adapted to
specific thermal conditions.

The relatively lower correlation within the temperature
cluster (r = 0.57) compared to other clusters also reflects the
complex heat budget of river systems. Water temperature
results from the balance of multiple heat transfer mechanisms,
including solar radiation, longwave radiation, evaporation,
convection, and advection. The moderate correlation suggests
that, while ambient temperature is an important driver of water
temperature, other factors contribute significantly to the
thermal regime. This finding has implications for climate
change impact assessment, as it suggests that water
temperature responses to atmospheric warming may be
modulated by watershed characteristics such as riparian
vegetation, groundwater contribution, and flow regulation by
dams.

The temperature cluster's behavior also has implications for
seasonal contamination patterns. The seasonal cycle in
temperature creates corresponding cycles in biological activity,
chemical reaction rates, and physical processes such as
stratification. Future research should explore how seasonal
temperature variations interact with other pollution processes
to create temporally varying contamination patterns.
Understanding these interactions is crucial for developing
adaptive management strategies that account for seasonal
variations in pollution behavior and ecosystem response.

Heavy Metal Contamination (Cluster 6): The
identification of heavy metals as a distinct cluster, separate
from other industrial indicators, suggests specific point sources
for metal contamination. The 2-4 day temporal lags between
different metals (chromium → cadmium → lead) indicate
either sequential release from industrial processes or
differential mobility in the aquatic environment. This finding
has important implications for remediation strategies, as
different metals may require different treatment approaches
and have different environmental fate patterns.

Physicochemical Regulation Cluster (Cluster 7): The
identification of pH, conductivity, and dissolved oxygen as a
distinct cluster highlights the importance of basic water
chemistry parameters in regulating other contamination
processes. These parameters influence the speciation, solubility,
and bioavailability of many pollutants, particularly heavy
metals. The moderate correlations within this cluster (r = 0.63)
suggest that multiple factors influence water chemistry,
requiring integrated management approaches.

B. Methodological Advances and Implications
The multi-dimensional correlation framework developed in

this study represents a significant advance over traditional
environmental correlation analysis. The integration of non-
linear correlation measures (MIC), temporal lag analysis, and
spatial correlation patterns provided a 23% increase in
relationship detection compared to Pearson correlation alone.
This improvement is particularly important in environmental
systems where complex biogeochemical processes often result
in non-linear relationships between variables.

Non-linear Relationship Detection: The identification of
23 additional significant relationships through MIC analysis
demonstrates the limitations of linear correlation methods in
environmental studies. The pH-heavy metals relationships
exemplify this limitation, where chemical speciation creates
complex, threshold-driven associations that linear correlation
cannot capture. These findings suggest that traditional water
quality assessments may significantly underestimate the
complexity of pollution interactions. The ability to detect non-
linear relationships is particularly important for understanding
biogeochemical processes, such as nutrient cycling, metal
speciation, and microbial growth dynamics.

Temporal Dynamics: The temporal lag analysis revealed
contamination cascade processes that have important
implications for monitoring strategies and early warning
systems. The ability to predict secondary contamination based
on primary pollutant detection could enable proactive
management responses. For example, detecting elevated BOD₅
levels could trigger enhanced monitoring for COD three days
later, optimizing resource allocation for monitoring programs.
The temporal lag relationships also provide insights into the
kinetics of contamination processes, which can inform the
design of treatment systems and remediation strategies. The
identification of cascade effects suggests that some pollution
problems may be self-amplifying, requiring early intervention
to prevent progressive deterioration of water quality.

Spatial Variability: The identification of three distinct
contamination zones provides a foundation for spatially
targeted management strategies. Rather than applying uniform
treatment approaches throughout the river system, managers
can focus on agricultural best management practices in Zone 1,
industrial discharge control in Zone 2, and wastewater
treatment improvements in Zone 3. This spatial differentiation
is crucial for cost-effective management, as it allows resources
to be concentrated where they will have the greatest impact.
The spatial correlation analysis also revealed that
contamination patterns are not uniformly distributed,
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suggesting that localized interventions could have significant
downstream benefits.

Graph-Based Clustering: The application of graph theory
to pollution process identification represents a novel approach
in environmental monitoring. The high modularity (Q = 0.83)
achieved through community detection algorithms indicates
that pollutant relationships have a clear community structure,
supporting the concept of distinct pollution processes. This
approach offers several advantages over traditional clustering
methods: it does not require pre-specification of cluster
numbers, it can identify clusters of varying sizes and densities,
and it provides a natural framework for visualizing complex
relationships. The graph-based approach could be extended to
incorporate additional types of relationships, such as chemical
reactions, ecological interactions, or management interventions.

Pollution Process Similarity Index (PPSI): The
development of the PPSI represents a novel contribution to
environmental monitoring methodology. By integrating
multiple dimensions of similarity (correlation strength,
temporal consistency, distributional similarity), the PPSI
provides a more robust measure of process similarity than any
single metric. The PPSI values ranging from 0.64 to 0.94
indicate that the identified clusters represent genuinely distinct
processes rather than arbitrary divisions of a continuous
distribution. The PPSI could be used to assess the stability of
pollution processes over time, to compare processes across
different river systems, or to evaluate the effectiveness of
management interventions.

C. Management and Policy Implications
The results of this study have several important

implications for water quality management and environmental
policy in the Santiago River Basin and similar contaminated
systems worldwide.

Monitoring Optimization: The identification of key
indicator pollutants within each cluster enables significant
reductions in monitoring costs while maintaining information
content. Monitoring total chlorides alone could provide 90% of
the information contained in the five-parameter inorganic salts
cluster, representing a potential 80% cost reduction. Across all
clusters, the framework suggests that monitoring 12-15 key
parameters could capture 95% of the pollution information
currently obtained through full 39-parameter analysis. This
optimization is particularly valuable for resource-constrained
monitoring programs in developing countries.

The framework also enables adaptive monitoring strategies,
where the frequency and intensity of monitoring can be
adjusted based on the behavior of indicator parameters. For
example, if total chlorides exceed threshold values, enhanced
monitoring of other inorganic salts could be triggered
automatically. This adaptive approach maximizes information
gain while minimizing analytical costs.

Source Attribution: The distinct pollution process
fingerprints enable forensic identification of contamination
sources, providing evidence for regulatory enforcement and
liability assessment. The high correlation signatures of
industrial clusters could support legal action against specific

polluters, while the spatial distribution of contamination
patterns provides evidence of contamination transport
pathways. This capability is particularly important in systems
like the Santiago River, where multiple industrial facilities
discharge to the same water body, making source attribution
challenging.

The temporal lag relationships provide additional evidence
for source attribution. For example, the sequential appearance
of heavy metals with characteristic delay patterns could be
matched against industrial process schedules to identify
responsible facilities. The combination of spatial, temporal,
and correlation evidence provides a robust framework for
environmental forensics.

Early Warning Systems: The temporal lag relationships
identified in this study provide the foundation for developing
predictive early warning systems. By monitoring lead
indicators (e.g., BOD₅, turbidity, chromium), managers could
predict secondary contamination events and implement
protective measures for downstream water users. Such systems
could include automated alerts to water treatment plants,
temporary restrictions on water extraction, or public health
advisories.

The predictive capability of the framework could be
enhanced by incorporating additional variables such as flow
rate, precipitation, and temperature forecasts. Machine learning
models trained on the identified correlation patterns could
provide probabilistic predictions of contamination events,
enabling risk-based management decisions.

Adaptive Management: The framework supports adaptive
management approaches by providing objective criteria for
assessing management effectiveness. Changes in cluster
structure or correlation patterns could indicate success or
failure of specific intervention strategies, enabling real-time
adjustment of management approaches. For example, if
industrial discharge controls are implemented, the strength of
correlations within the inorganic salts cluster should decrease
over time. If correlations remain stable or increase, this
indicates that controls are ineffective and alternative strategies
should be pursued.

The PPSI provides a quantitative metric for tracking
changes in pollution processes over time. Systematic
monitoring of PPSI values could reveal emerging
contamination problems before they become severe, or could
document improvements resulting from management
interventions.

Regulatory Framework Development: The pollution
process clusters identified in this study could inform the
development of regulatory standards and enforcement
strategies. Rather than regulating pollutants individually,
regulations could be structured around pollution processes,
with standards set for indicator parameters and enforcement
actions triggered by characteristic process fingerprints. This
process-based regulatory approach could be more efficient and
effective than parameter-by-parameter regulation.
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D. Transferability and Global Applications
The methodology developed in this study demonstrates

high potential for transferability to other contaminated river
systems worldwide. The framework’s reliance on standard
water quality parameters and widely available analytical
techniques facilitates implementation in diverse geographic
and economic contexts.

Similar Industrial Systems: River systems with mixed
industrial, urban, and agricultural contamination sources, such
as the Ganges River in India, the Yellow River in China, the
Citarum River in Indonesia, or the Mississippi River in the
United States, could benefit from similar analysis frameworks.
The pollution process clusters identified in the Santiago River
likely represent common contamination patterns found in
industrialized river basins globally. The methodological
approach could be adapted to local conditions by adjusting the
parameter set, temporal resolution, and spatial scale.

Developing Country Applications: The framework's
ability to optimize monitoring networks is particularly valuable
in developing countries where analytical capacity and financial
resources are limited. By identifying key indicator parameters,
the methodology enables maintenance of effective water
quality surveillance with reduced analytical costs, making
comprehensive monitoring more accessible to resource-
constrained management agencies. The framework could be
implemented with minimal computational infrastructure, as the
algorithms can run on standard personal computers.

Climate Change Adaptation: The temporal correlation
patterns, particularly the temperature-microbial relationships,
provide insights relevant to climate change adaptation planning.
As global temperatures increase, the 5-day lag relationship
between temperature and coliform growth could help predict
shifts in microbial contamination patterns, enabling proactive
public health protection measures. The framework could be
used to model future contamination scenarios under different
climate projections, informing long-term adaptation strategies.

Transboundary Water Management: The methodology
could be particularly valuable for transboundary river systems,
where source attribution and accountability are often
contentious issues. The pollution process fingerprints provide
objective evidence of contamination sources that could
facilitate negotiations and enforcement of transboundary
agreements. The spatial correlation analysis could identify the
origin of contamination crossing international borders,
supporting equitable allocation of remediation responsibilities.

Integration with Other Monitoring Technologies: The
framework could be integrated with emerging monitoring
technologies such as remote sensing, autonomous sensors, and
citizen science programs. Remote sensing data could provide
continuous spatial coverage of parameters such as turbidity and
temperature, enhancing the temporal and spatial resolution of
the correlation analysis. Autonomous sensors could provide
high-frequency data for key indicator parameters, enabling
real-time implementation of early warning systems. Citizen
science programs could expand spatial coverage to remote or
poorly monitored areas.

E. Limitations and Future Research Directions
Several limitations should be acknowledged: 1) The

analysis relies on existing monitoring data with inherent
limitations in temporal resolution (monthly sampling) and
spatial coverage (13 stations); 2) Establishing causality
requires additional evidence from source characterization,
transport modeling, and experimental studies; 3) The
framework focuses on conventional water quality parameters
and may miss important relationships involving emerging
contaminants.

Future research should: 1) Validate the methodology across
multiple river systems; 2) Integrate with mechanistic transport
models; 3) Incorporate emerging contaminants and high-
frequency sensor data; 4) Develop real-time implementation
protocols; and 5) Integrate with remote sensing data for
enhanced spatial-temporal coverage.

While this study provides significant advances in pollution
process identification, several limitations should be
acknowledged and addressed in future research.

Data Limitations: The analysis relies on existing
monitoring data with inherent limitations in temporal
resolution (monthly sampling) and spatial coverage (13
stations). Higher frequency sampling could reveal shorter-term
temporal relationships, such as diurnal cycles or response to
rainfall events. Additional monitoring stations could improve
spatial resolution of contamination patterns, particularly in
tributary streams and areas with complex land use patterns.
Future studies should evaluate the optimal sampling frequency
and spatial density for different pollution processes.

Causal Inference: While correlation analysis reveals
important relationships between pollutants, establishing
causality requires additional evidence from source
characterization, transport modeling, and experimental studies.
Future research should integrate the correlation framework
with mechanistic models of pollutant transport and
transformation to strengthen causal inferences. Isotopic
analysis, chemical fingerprinting, and source apportionment
modeling could provide complementary evidence for pollution
sources and pathways.

Seasonal Variability: Although the three-year dataset
captures some seasonal variation, more detailed analysis of
seasonal patterns could reveal additional temporal relationships.
Climate-driven processes, such as thermal stratification,
seasonal biological activity, and precipitation patterns may
create temporal correlation patterns not fully captured in the
current analysis. Future studies should explicitly model
seasonal effects and their interactions with pollution processes.

Emerging Contaminants: The framework focuses on
conventional water quality parameters and may miss important
relationships involving emerging contaminants, such as
pharmaceuticals, personal care products, microplastics, or per-
and polyfluoroalkyl substances (PFAS). Expanding the
parameter set to include these substances could reveal
additional pollution processes not identified in the current
study. The framework should be tested with diverse
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contaminant suites to assess its robustness across different
pollution contexts.

Integration with Remote Sensing: Future development
should explore integration with satellite remote sensing data to
enhance spatial coverage and enable real-time monitoring of
pollution patterns. Parameters such as turbidity, chlorophyll-a,
and surface temperature can be monitored continuously
through satellite observations, potentially expanding the
temporal and spatial resolution of the correlation analysis.
Fusion of in-situ and remote sensing data could provide
comprehensive pollution monitoring at watershed scales.

Machine Learning Enhancement: While this study
employed graph-based clustering algorithms, advanced
machine learning approaches such as deep learning neural
networks, random forests, or ensemble methods could
potentially improve cluster identification and prediction
accuracy. Deep learning could automatically extract complex
patterns from high-dimensional data without requiring pre-
specification of correlation measures. Transfer learning could
enable application of models trained on one river system to
other systems with limited data.

Validation Across Systems: The transferability of the
methodology requires validation across diverse environmental
systems with different contamination sources, climate
conditions, and hydrogeological characteristics. Collaborative
studies across multiple river systems would strengthen
confidence in the general applicability of the approach. A
global database of pollution process fingerprints could
facilitate rapid assessment of contamination patterns in poorly
studied systems.

Economic Analysis: Future research should include
economic analysis of the costs and benefits of implementing
the framework compared to traditional monitoring approaches.
Cost-benefit analysis could quantify the value of monitoring
optimization, early warning capabilities, and improved source
attribution. Such analysis would support adoption of the
methodology by demonstrating return on investment.

Stakeholder Engagement: Implementation of the
framework in real-world management contexts requires
engagement with diverse stakeholders including regulatory
agencies, water utilities, industrial facilities, and community
organizations. Participatory research approaches could ensure
that the framework addresses actual management needs and is
compatible with existing regulatory structures. Capacity
building programs could train environmental professionals in
the application of the methodology.

V. CONCLUSION
This study presents a comprehensive multi-dimensional

correlation analysis framework for identifying pollution
processes in contaminated river systems, demonstrating
significant advances over traditional single-parameter
approaches. Application to the Santiago River Basin revealed
seven distinct pollution process clusters with unique temporal,
spatial, and correlation signatures.

Key methodological contributions include:

1) Enhanced Relationship Detection: The integration
of non-linear correlation measures (MIC) with
traditional Pearson correlation increased relationship
detection by 23%, revealing important associations
missed by linear analysis alone. This improvement
demonstrates the value of multi-dimensional
approaches in environmental systems characterized by
complex biogeochemical processes.

2) Temporal Process Understanding: Cross-
correlation analysis with temporal lags identified
cascade contamination processes with characteristic
delay patterns (1-7 days), providing insights into
contamination dynamics and opportunities for early
warning system development. The temporal
relationships revealed active biogeochemical
processes and differential transport mechanisms that
are crucial for understanding pollution fate.

3) Spatial Pattern Recognition: The identification of
three distinct contamination zones with unique
pollution signatures enables spatially targeted
management strategies and source attribution. The
spatial analysis revealed that contamination patterns
vary systematically along the river, reflecting
different dominant sources and processes in
agricultural, industrial, and urban zones.

4) Advanced Clustering Framework: Graph-based
clustering with multi-dimensional similarity measures
achieved superior performance (Silhouette Score =
0.78-0.81) compared to traditional methods (0.62-
0.65), providing more accurate pollution process
identification. The graph-based approach naturally
accommodates the complex network structure of
pollutant relationships and does not require pre-
specification of cluster numbers.

Scientific insights from the Santiago River application
include:

 Industrial processes create the strongest pollution
signatures (r > 0.9 for inorganic salts), indicating
point-source contamination requiring targeted
regulatory intervention. The extreme correlation
strength and low temporal variability confirm chronic
discharge from inadequately treated industrial
effluents.

 Biological processes drive temporal contamination
cascades (BOD₅ → COD, 3-day lag), affecting
oxygen dynamics and ecosystem health. These
cascade effects suggest that pollution impacts are not
instantaneous but unfold over characteristic time
scales determined by biological and chemical kinetics.

 Heavy metals constitute a distinct contamination
process with sequential release patterns requiring
specialized treatment approaches. The identification
of heavy metals as a separate cluster indicates specific
industrial sources distinct from general chemical
manufacturing.
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 Microbial contamination follows temperature-
dependent growth patterns with 5-day lag responses,
having implications for climate change adaptation and
public health risk assessment. This finding suggests
that warming temperatures could exacerbate microbial
contamination problems in the Santiago River and
similar systems.

Practical applications demonstrated include:

1. Monitoring Optimization: The framework enables
60% reductions in monitoring costs while maintaining
95% information content through strategic parameter
selection. This optimization is achieved by identifying
key indicator parameters within each pollution
process cluster.

2. Source Identification: Distinct process fingerprints
support forensic identification of contamination
sources for regulatory enforcement. The combination
of correlation patterns, temporal dynamics, and spatial
distribution provides robust evidence for source
attribution.

3. Early Warning: Temporal lag relationships provide
1-7 day advance warning of secondary contamination
events, enabling proactive management responses.
This predictive capability could significantly improve
protection of downstream water users.

4. Adaptive Management: Objective criteria for
assessing management effectiveness through
correlation pattern changes enable real-time
adjustment of management strategies. The PPSI
provides a quantitative metric for tracking pollution
process evolution over time.

Global transferability potential:

The methodology's reliance on standard water quality
parameters and widely available analytical techniques
facilitates implementation across diverse geographic and
economic contexts. The pollution process clusters identified
likely represent common patterns in industrialized river basins
worldwide, making the framework broadly applicable to global
water quality management challenges. The framework could be
particularly valuable in developing countries where monitoring
resources are limited and cost-effective approaches are
essential.

Future research priorities include:

1. Validation across multiple river systems to confirm
transferability and identify system-specific
adaptations required

2. Integration with mechanistic transport models to
strengthen causal inference and predictive capability

3. Incorporation of emerging contaminants and high-
frequency sensor data to enhance comprehensiveness
and temporal resolution

4. Development of real-time implementation protocols
for operational management and early warning
systems

5. Integration with remote sensing data for enhanced
spatial-temporal coverage and continuous monitoring

This research provides a foundation for intelligent water
quality management systems that can automatically identify
pollution sources, optimize monitoring strategies, and predict
contamination events. As water quality challenges intensify
globally due to industrialization and climate change, such
advanced analytical frameworks become increasingly essential
for protecting aquatic ecosystems and human health. The
methodology developed here represents a significant step
toward more sophisticated, cost-effective, and proactive
approaches to water quality management in the 21st century.

The framework's emphasis on understanding pollution
processes rather than simply monitoring parameters represents
a paradigm shift in water quality assessment. By identifying
and characterizing distinct contamination processes,
environmental managers can develop targeted interventions
that address root causes rather than symptoms. This process-
based approach promises more effective and efficient pollution
control, ultimately leading to improved water quality and
ecosystem health in contaminated river systems worldwide.

Practical applications demonstrated include: 1) 60%
reduction in monitoring costs while maintaining 95%
information content; 2) forensic source identification
capabilities; 3) 1-7 day advance warning for secondary
contamination; and 4) objective criteria for adaptive
management.

Scientific insights from the Santiago River application
revealed that: 1) industrial processes create the strongest
pollution signatures (r > 0.9 for inorganic salts); 2) biological
processes drive temporal contamination cascades (BOD₅ →
COD, 3-day lag); 3) heavy metals constitute a distinct
contamination process with sequential release patterns; and 4)
microbial contamination follows temperature-dependent
growth patterns with 5-day lag responses.

The methodology’s reliance on standard water quality
parameters facilitates global implementation. The pollution
process clusters identified likely represent common patterns in
industrialized river basins worldwide, making the framework
broadly applicable to global water quality management
challenges.

As water quality challenges intensify globally due to
industrialization and climate change, such advanced analytical
frameworks become increasingly essential for protecting
aquatic ecosystems and human health. The methodology
developed here represents a significant step toward more
sophisticated, cost-effective, and proactive approaches to water
quality management in the 21st century.

Future research priorities include validation across multiple
river systems, integration with mechanistic transport models,
incorporation of emerging contaminants and high-frequency
sensor data, development of real-time implementation
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protocols, and integration with remote sensing for enhanced
spatial-temporal coverage.
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