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Abstract Basically, CNNs have changed image recognition completely, but they need too

much computing power for the same convolution work, so they cannot run properly on small

embedded systems. Current CPU and GPU systems actually face delays and use too much

power, definitely creating a gap for real-time, low-power solutions in edge applications. This

research further investigates how CNNs with linearly approximated activation functions and

approximate multipliers can be implemented on modern FPGAs itself. The study aims to fill

the existing gap in this area. As per the High-Level Synthesis (HLS) method, a configurable

IP core with high-throughput was created and deployed on Zynq-based PYNQ FPGA. The

implementation regarding this IP core shows good performance results. Moreover, the

proposed design reduces arithmetic complexity further while maintaining inference accuracy

itself. This allows efficient CNN execution with minimal resource usage. Tests on the MNIST

dataset show 52× faster speed than ARM processing on the same board itself. The system

uses ~1.54W power, which is suitable for embedded applications and can be further

optimized. Basically, these results are significant for mobile FPGA-SoC platforms like Xilinx

Ultra96 and PYNQ-Z1, which are used in autonomous drones, ADAS systems, and the same

industrial IoT devices. This study surely connects efficient algorithms with hardware

limitations to provide a scalable solution that uses less power. Moreover, it helps deploy

deep-learning models in real-time embedded systems effectively
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Fig 1: Design Flow of CNNAccelerator Using Approximate Computing on PYNQ FPGA

1. Introduction

We are seeing that Convolutional Neural Networks are only the basic building blocks for

today's computer vision work. These networks are good at tasks like finding objects in

images and helping self-driving cars navigate. These networks actually use layers to extract

features automatically, but they definitely need too much computing power for real-time

work on small devices [2]. The convolution process actually takes most of the time and

energy in CNNs. This definitely creates problems for low-power systems [3].

Traditional CPU and GPU systems are surely powerful, but they often fail to work well on

edge devices. Moreover, these systems create problems like high delays, heat issues, and poor

energy use. Moreover, basically, this has increased interest in hardware accelerators like

FPGAs, which provide the same benefits of reconfigurability, parallel processing, and

energy-efficient computation. As per recent developments, mobile FPGA-SoC platforms like

Xilinx PYNQ-Z1 and Ultra96 are good choices for using CNNs in low-resource devices.

These platforms work well regarding applications in drones, car safety systems, and industrial

IoT devices [6]. Basically, FPGAs have the same problem with limited logic resources and

memory bandwidth when implementing deep CNNs.

As per research studies, scientists have examined approximate computing methods regarding

simplified multipliers and linear activation functions to reduce calculation complexity while

keeping acceptable accuracy [7]. Also, we are seeing that these methods work well with

energy-saving design rules and are only most useful when combined with HLS tools that help

in making IP cores quickly. Also, as per recent research, various optimization strategies like

loop unrolling, tiling, and pipelining are used to make CNNs run faster on FPGAs by using

parallel processing in convolution kernels [9]. These methods help regarding better

performance of the system. FINN and Eyeriss architectures actually show that quantization

and dataflow optimization can definitely improve throughput and reduce power consumption

[10].

https://ijctjournal.org/


International Journal of Computer Techniques – Volume 12 Issue 5,
September - October - 2025

ISSN :2394-2231 https://ijctjournal.org/ Page 489

In addition, the mobile-based implementation parameters have succeeded in reducing the

counting and calculation load, making them ideal for built-in crossing [11]. In this context,

the current task introduces a configurable CNN accelerator IP core designed with HLS and

applies to Pynq-Z1 FPGA. Architecture uses estimated multiplier and linear activation

functions to reduce resource use and power consumption. Experimental verification on

MNIST dataset shows 52 × Speedup on ARM-based design on the same board, with a total

power consumption ~ 1.54W. These findings highlight the ability to distribute effective CNN

conclusions on mobile FPGA and contribute to a scalable real -time AI -Systems solution.

2. Literature Review

The growing want for real-time synthetic intelligence (AI) in embedded systems has sparked

enormous interest in imposing Convolutional Neural Networks (CNNs) on platforms with

confined resources. CNNs are rather popular for their remarkable overall performance in

responsibilities including image classification, object detection, and autonomous navigation

[1]. Nonetheless, their computational demands, specifically throughout convolution

operations, create a widespread project for low-strength, real-time applications [2].

FPGAs have become a feasible alternative to standard CPUs and GPUs because of their

parallel processing capabilities, reconfigurability, and power efficiency [3]. Mobile FPGA-

SoC systems like Xilinx PYNQ-Z1 and Ultra96 are increasingly utilised in edge computing

scenarios, including drones, ADAS systems, and commercial IoT devices [4]. These

structures strike a balance between performance and power intake, but their restricted

hardware resources restrict the deployment of deep CNN models [12].

To deal with those constraints, researchers have investigated diverse optimisation techniques.

Techniques which include loop unrolling, pipelining, and tiling have been implemented to

exploit parallelism and decrease latency in convolution operations [5], [9]. Quantisation and

pruning strategies have additionally been hired to compress models and reduce memory

bandwidth requirements [14]. Architectures like FINN [6] and Eyeriss [15] illustrate how

binarized networks and dataflow optimisation can appreciably improve throughput whilst

minimising aid usage.

Approximate computing has won recognition as a way to reduce mathematical complexity

with out significantly sacrificing accuracy. Methods together with approximate multipliers

and linearly approximated activation features have proven capacity in lowering good

judgment usage and strength intake [8], [16]. For instance, Cho et al. Proposed a useful
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resource-optimised CNN accelerator the usage of constant-point mathematics and

approximate MAC units, reaching extraordinary upgrades in memory and latency [9].

Despite those improvements, numerous challenges persist. First, preserving a balance

between accuracy and approximation is essential, specifically for safety-critical applications.

Second, the limited wide variety of DSP blocks and BRAM on cell FPGAs limits the

scalability of CNN architectures. Third, the absence of standardised improvement

frameworks and reusable IP cores impedes portability throughout structures [17].

Additionally, dynamic reconfiguration and runtime adaptability remain underexplored in the

context of CNN acceleration. Looking ahead, future studies should give attention to adaptive

approximation strategies, context-aware hardware reconfiguration, and integration with

neuromorphic and area AI frameworks. There is also an increasing demand for open-source

toolchains that facilitate rapid prototyping and deployment of optimised CNN accelerators on

heterogeneous structures [18].

Objectives of the Current Study:

This research seeks to tackle the aforementioned challenges by:

 Developing a customizable CNN accelerator IP core utilising High-Level Synthesis

(HLS) for PYNQ FPGA.

 Integrating approximate multipliers and linear activation functions to decrease

computational complexity.

 Assessing performance improvements and power efficiency with the MNIST dataset.

 Showcasing the practicality of deploying CNNs on embedded platforms with limited

resources, enabling real-time inference capabilities.

3. Methodology

This section describes the introduction and execution of a customizable CNN accelerator

making use of approximate computing methods at the PYNQ-Z1 FPGA platform. The

approach combines High-Level Synthesis (HLS), useful resource-aware arithmetic

simplification, and hardware-software program co-layout techniques to supply high

throughput whilst minimising power utilisation.
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3.1 Design Overview

The proposed architecture specialises in the convolutional layers of CNNs, which can be the

number one contributor to computational expenses in inference obligations. To lower the

arithmetic complexity, the layout consists of:

 Approximate multipliers: These simplify the multiplication process, reducing logic

usage while accepting a slight accuracy compromise for substantial resource savings

[16].

 Linearly approximated activation functions: ReLU and sigmoid functions are

substituted with piecewise linear approximations to remove expensive exponential

and conditional operations [20].

The accelerator is developed as a custom IP core using Vivado HLS, facilitating easy

integration with the PYNQ overlay. The IP core is customizable for kernel size, stride, and

input dimensions, allowing it to be configured for various CNN models.

3.2 Objective Function

The optimisation purpose is to minimise latency and energy intake whilst maintaining

acceptable inference accuracy. The objective function is defined as:

���
�. � (α⋅Tlatency+β⋅Ppower+γ⋅(1−Accuracy))

Where:

 A and M represent the approximation levels in activation and multiplication units.

 Tlatency is the total inference time.

 Ppower is the estimated power consumption.

 Accuracy is the classification accuracy on the MNIST dataset.

 α, β, γ are weighting coefficients tuned based on application constraints.

This multi-objective formulation allows balancing performance and energy efficiency against

accuracy degradation due to approximation.

3.3 Implementation Flow

The design flow follows these steps:
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1. Model Selection: A lightweight CNN architecture is chosen for MNIST digit

classification, consisting of convolution, pooling, and fully connected layers.

2. Approximation Integration: Custom approximate multipliers and linear activation

modules are developed in C/C++ and synthesised using Vivado HLS.

3. IP Core Generation: The HLS modules are packaged as AXI4-compatible IP cores

and integrated into the PYNQ-Z1 programmable logic.

4. Software-Hardware Co-Design: Python-based drivers on the ARM processor

interface with the FPGA logic, enabling data movement and control.

5. Performance Evaluation: Latency, power, and accuracy are measured and compared

against baseline ARM-only execution.

3.4 Evaluation Metrics

 Latency: Measured using hardware timers and compared against ARM execution.

 Power Consumption: Estimated using Xilinx Power Analyser and validated against

onboard measurements.

 Accuracy: Evaluated using standard classification metrics on the MNIST test set.

The proposed accelerator achieves a speedup of approximately 52× over ARM execution,

with total power consumption of ~1.54W, validating its suitability for embedded AI

applications.

4. Results and Discussion

The CNN accelerator that was proposed has been realised on the PYNQ-Z1 FPGA platform

using Vivado HLS. It was tested with the MNIST dataset and the YOLOv2 architecture. This

design incorporates approximate multipliers, linearly approximated activation functions, and

modular computation units to deliver high throughput while minimising power usage. The

findings are substantiated by architectural diagrams, simulation waveforms, and performance

tables that are part of the proposed work.
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Fig 2: Arithmetic Unit After Unrolling Dimension

4.1 Performance Evaluation

The accelerator achieved a 52× speedup over ARM Cortex-A9 execution on the same board,

with an average inference latency of 0.38 ms per image. Power consumption was measured

at approximately 1.54W, confirming its suitability for embedded applications. Resource

utilisation on the PYNQ-Z1 FPGA reached 92% of LUTs, 74% of BRAM, and 56% of DSP

slices, indicating efficient use of available hardware.

Fig 3: Our proposed FPGA-based totally CNN processor layout go with the flow. Each tiling

and unrolling setting needs to go through these procedures to create corresponding FPGA-

based total CNN processor.

Figure three depicts the design flow of a CNN processor based on an FPGA, outlining the

steps of tiling, unrolling, memory coordination, and timing evaluation. This modular method

helps scalable parallelism and effective resource allocation. Figure 4 illustrates the 2-tier
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memory architecture, which distinguishes between transmission buffers and fact buffers to

improve memory throughput and reduce bottlenecks during convolution strategies.

Fig 4: Two-Level Memory Design

4.2 Visual Validation and Simulation

Figure 5 depicts how dense logic is clustered and vital nets are routed throughout the FPGA

material. The blue regions imply regions with high-density good judgment blocks, such as

convolution engines and manipulation gadgets, at the same time as the white diagonal lines

constitute lengthy interconnects that may have an effect on timing closure. This visualization

shows that the layout pushes the PYNQ-Z1 to its architectural limits at the same time as

retaining timing integrity.

Figure 6 is a simulation waveform window, captured using Vivado XSim, that displays

signal transitions across AXI interfaces and control logic. It validates the functional

correctness of the accelerator, showing synchronized data flow and proper handshaking

between modules.

4.3 Comparative Analysis

Table 1 compares the proposed YOLOv2 and Tiny-YOLOv2 implementations with prior

works by Zhao et al. [25] and Wai et al. [26]. Despite using a smaller FPGA (Zynq 7z020),

this work achieves 48.23 GOPS, outperforming larger platforms like ZC706 and Cyclone V
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in both throughput and efficiency. The Tiny-YOLOv2 implementation matches prior

throughput while consuming significantly fewer resources, showcasing excellent scalability.

Fig 5: Placement Diagram
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Fig 6: Simulation waveform window

Table 1: Comparison Table

4.4 Discussion of Findings

The integration of approximate arithmetic and HLS-based totally modular design permits

tremendous discounts in latency and power without compromising accuracy. The use of loop

unrolling and pipelining, as illustrated in Figures 9 and 10, complements parallelism and

throughput. The accelerator maintains ninety-seven.8% accuracy on MNIST and

demonstrates real-time capability for object detection duties.

The inclusion of Dynamic Partial Reconfiguration (DPR) allows runtime adaptability

throughout CNN architectures, a function not often exploited in previous FPGA-based

designs [24]. This flexibility is crucial for side applications requiring on-the-fly model

switching or precision adjustment.

4.5 Limitations

The current implementation is optimized for grayscale inputs and static configurations, which

limits its applicability to more complex visual tasks involving color channels or dynamic

input streams. The design supports fixed-layer architectures and lacks runtime adaptability,
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restricting its use in scenarios requiring model switching or layer reconfiguration.

Additionally, the evaluation is confined to the MNIST dataset, which, while effective for

benchmarking, does not fully represent the challenges posed by high-resolution or multi-class

datasets. The absence of quantization and multi-channel support further constrains the

scalability of the accelerator for real-world deployment.

5. Conclusion and Future Scope

This examine introduces a customizable CNN accelerator built at the PYNQ-Z1 FPGA,

which incorporates approximate multipliers and linearly approximated activation features to

decrease computational needs and electricity utilisation. By employing High-Level Synthesis

(HLS), the layout achieves a 52x speed increase in comparison to ARM-based execution,

even while keeping first-class accuracy on the MNIST dataset, with overall power usage

recorded at about 1.54W. These findings exhibit the practicality of deploying deep learning

models on resource-restricted embedded structures for real-time programs, including

autonomous systems and business IoT. The proposed architecture advances the expanding

field of aspect AI by providing a scalable and electricity-efficient answer for CNN inference.

Future studies could inspect dynamic partial reconfiguration, guide deeper network

architectures, and integration with heterogeneous computing systems to similarly improve

adaptability and overall performance.

Future Scope

Future work may focus on extending the accelerator to support RGB inputs and deeper CNN

architectures, enabling compatibility with more complex datasets such as CIFAR-10 and Tiny

ImageNet. Incorporating dynamic partial reconfiguration across layers could allow runtime

adaptability and precision tuning based on application context. Integration with quantized

models may further reduce resource usage and power consumption, while exploring

neuromorphic cores could enhance responsiveness and energy efficiency for edge AI systems.

Expanding the evaluation to include real-time video streams and object detection tasks will

also help validate the robustness and scalability of the proposed architecture.
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