International Journal of Computer Techniques — Volume 12 Issue 5, September - October - 2025

An Automated Web Vulnerability Scanner for
Detecting Common Security Flaws in Modern
Web Applications

Dhvani Dumaniya
Department of Computer Engineering
Atmiya University
Rajkot,India
ddumaniya866@gmail.com

Yagnesh N. Makawana
Department of Computer Engineering
Atmiya University
Rajkot,India
yagnesh.makawana@atmiyauni.ac.in

Niraj Dineshkumar Bhagchandani
Department of Computer Engineering
Atmiya University
Rajkot,India
bhagchandani.niraj@gmail.com

Abstract — Due to the high number of sectors
utilizing web applications today such as, banking,
healthcare, e-commerce and so on, security is the most
prominent issue concerning the web applications.
Traditional vulnerability testing techniques, such as
manual penetration testing, may become time-consuming
and expensive; they may also have a very high tolerance
that renders them incapable of scaling to the size and
complexity of a contemporary web application. A web
vulnerability scanner created by us in this paper can
prevent these deficiencies. Scanner based on the
principles of crawling a web site, traversing links and
form fields, submitting forms and reading responses,
gathering all input vector by, and then determining all
potential XSS -injection points. The trick that the tool
applies is to execute attack payloads on target
applications and to test their responses to attack the
most prevalent web application security vulnerabilities.
When a scan is completed, it creates a report in the form
of JSON and enumerates the severity, description and
location of the vulnerabilities identified. This automated
method eliminates most of the manual testing and gives
the developers relevant feedback of what they can do to
enhance the security of web applications. The scanner is
tiny and needs no extra computer hardware thus a great
tool to developers, small businesses and schools.
Experimentally, the scanner was determined to be
capable of effectively identifying the vulnerable states
and a practical tool in enhancing web security by
experimenting with home-made vulnerable sites. The
work is to be seen as a more convenient and efficient
solution instead of the traditional security testing
technology besides it aids in the fill-up of the hue in the
vital security defects of web applications.

Keywords — Web Vulnerability Scanner, SQL,
Cross-Site Scripting (XSS) and Automated Security
Testing and Vulnerability Detection.

I. INTRODUCTION
Web applications are currently taking an influential role in
businesses of various industries such as banking, healthcare,
e-commerce and learning institutions. Nevertheless, as their
popularity grows, the threat of them falling victim to
cyberattacks is growing, as well. Such vulnerabilities that are
usually exploited by these attacks include get injected, cross-
site scripting, cross-site request forgery, broken

ISSN :2394-2231

https://ijctjournal.org/

authentication that result in data leakage, financial loss and
negative reputation affect 1. This is unfortunate as well
because most high impact vulnerabilities can be tied down to
poor input validation, bad code and misconfigurations that
are difficult to detect after a long duration of use with the
complexities of modern applications [3]. Conventional
vulnerability tests include manual penetration tests, as well as
manual static analysis, which is time-consuming, expensive,
and highly likely to have human error [4]. As the world is
currently evolving to web applications, and traditional
methods cannot be scaled at all, it is also becoming harder to
keep security teams with an adequate defence as new
vulnerabilities continue to emerge. Indicatively, the number
of vulnerabilities that are critical is not prioritized much
when such testing is conducted manually given the sheer
magnitude of attack points [5]. It is costly and consumes a lot
of human resources to gain adequate coverage during such
testing through manual inspection, the use of security
vulnerability scanning tools has been considered as a sensible
method of managing this issue. so that possible
vulnerabilities in web applications are easily identified [6].
Most current automated tools however are either too difficult
to access by nonexperts, or do not provide the breadth needed
to identify 17 A modern example Web application security
Current WESA includes CSRF and advanced forms of XSS
[7]. There has never been a greater demand in the field of
web vulnerability scanning and reporting in terms of a real
product that is user friendly, efficient and affordable.

The solution of this research is an innovative one in the shape
of an automated web vulnerability scanner. It is a tool that is
lightweight and developer friendly designed to crawl web
applications in an intelligent fashion, vulnerability detection
over the multiple layers, and produce actionable reports. The
scanner is set to improve security practices by developers and
small businesses through its efficiency and scalability by
providing a low-cost and efficient way to determine the
prevalence of common web vulnerabilities and seals security
holes [8].

II. PROBLEM STATEMENT

Web applications are very much needed in the modern
digital world in various fields such as banking, healthcare, e-
commerce among many others. The higher the complexity of
these platforms, the higher the possibility of cyber threats.
Cross-site Requester Forgery (CSRF), SQL Injection (SQL1),
Cross-site Scripting (XSS), and Broken Authentication are
just some examples of vulnerabilities that expose sensitive

Page 372

https://ijctjournal.org/

International Journal of Computer Techniques — Volume 12 Issue 5, September - October - 2025

information, resulting in breaches that can cause huge losses
of money and reputation both to businesses and users [1][2].
The vulnerabilities are often caused by either poor design,
input validation, or misconfigurations, and would be hard to
discern without a full-fledged testing tool.

Manual penetration testing has been the standard of
testing web application vulnerabilities. But they are
accompanied by numerous problems. Manual testing is
expensive as it needs highly qualified personnel who have to
take time to sift through code and in most cases,
vulnerabilities are overlooked or not spotted by humans [3].
Also, these techniques are expensive thus restricting their
application to small companies or organizations with limited
budgets [4]. Better still, as modern web applications continue
to become more complex, the old forms of testing can no
longer be used to match the size of the testing required to
detect all potential risks [5].

The solution to this problem was to introduce automated
vulnerability scanners, which most of the existing tools fail
to do properly. Although certain scanners, e.g. OWASP ZAP
or Burp Suite, do provide the functionality of identifying
certain vulnerability type, they tend not to detect more
sophisticated security vulnerabilities, like CSRF or subtle
XSS bugs. Moreover, these tools are either too elaborate to
be understood by developers with slight security knowledge
or need to be configured to be complicated that may be a
barrier to acquisition by small organizations [6][7].
Automated tools are also not without flaws as they still have
coverage gaps and, in most cases, they do not generate easily
actionable reports that can be acted upon by developers or
security teams [8].

The ever-increasing demand of the necessity to have a
strong, user-friendly, and scalable solution to automate
vulnerability scanning has never been as urgent as it is today.
This is an obvious need of a tool that does not only ensure
the correct and detailed vulnerability detection but also gives
the results in a format that is easy to understand and act on
by the developers. The proposed research attempts to remedy
these deficiencies in the creation of a user-friendly and
efficient web vulnerability scanner that can detect a wide
variety of vulnerabilities in the new types of web
applications [9].

III. OBJECTIVES

The main aim of the research is to come up with a web
vulnerability scanner that can be used effectively in detecting
common types of web applications vulnerabilities, including
SQL Injection (SQLi), Cross-Site Scripting (XSS), Cross-
Site Request Forgery (CSRF), Broken Authentication, and
Directory Traversal. As the sophistication of modern web
applications grows, there is an urgent demand of security
tools that are capable of managing a large and diverse array
of possible vulnerabilities without being complex to
implement by developers of all skill levels.

The aim of this research is to produce a fast and user-
friendly scanner. The older vulnerability scanners can be
difficult to use and set up and typically need expert
knowledge to do so, which is a barrier to smaller
organizations or developers with less security knowledge [3].
Through simplicity, the proposed study seeks to develop a
tool that can be deployed simply without a lot of
configurations, allowing vulnerability scanning to be

ISSN :2394-2231

https://ijctjournal.org/

accessible to more individuals.

Moreover, the scanner will be able to produce detailed
reports in structured formats (like JSON), which will not
only provide a list of the vulnerabilities identified by the
scanner, but also specify their degree, location, and possible
effect on the web application. This functionality will assist
developers to focus on fixes and to enhance the security
posture of their apps faster and effectively [1][5].

Moreover, the scanner will be scalable to support all
types of web technology and customizable to accommodate
the unique security requirement in different types of web
applications [6][8]. The idea is to present a holistic solution
that will lessen the use of manual penetration testing,
increase the speed at which vulnerabilities can be found and
assists the organization to find and overcome security gaps in
time.

By covering these goals, this study will help to create a
powerful and lightweight web application security tool,
which is affordable and user friendly [9].

IV. LITERATURE REVIEW

Web vulnerability scanners are very important in
detecting security vulnerabilities within web applications.
Nevertheless, it is important to note that there is a high level
of diversity in the landscape regarding the tools on the
market, and they have different characteristics, advantages,
and weaknesses. This will compare the most notable web
vulnerability scanners, their advantages and disadvantages
against the scanner suggested in the current study. These
scanners contain popular scanners like OWASP ZAP, burp
suite, nikto and commercial tools like acunetix.

A. OWASP ZAP

One of the most used open-source vulnerability scanner
tools to use in penetration testing is OWASP ZAP (Zed
Attack Proxy). It offers automated as well as manual
vulnerability scanning features, and a wide range of security
testing tools. The tool is very customizable and boasts of a
good community support. It may however be involved to the
novice and needs a lot of setups which may be overwhelming

to users who lack sufficient security knowledge [1].
TABLE 1: COMPARISON OF OWASP ZAP’S STRENGTHS AND
WEAKNESSES.

Sr. Pros Cons

Noble installation and use
which involves skills.

1 Open-source and free to use.
Community support and constant
updates.

2 Full feature set, proxying, fuzzing
and scripting.

Only accessible to security
experts; high cost of learning
among new users.

3 Community support and constant
updates.

B. Burp Suite

Another most common tool of web application security
testing is Burp Suite. It is also known to be very accurate and
featureful, which makes it a tool of choice among
professional penetration testers. Nevertheless, the complete
version of Burp Suite is expensive and the free edition does
not have a few sophisticated capabilities. It is also fairly

complicated, thus not as user-friendly to laymen [2].
TABLE 2: COMPARISON OF BURP SUITE’S STRENGTHS AND
WEAKNESSES.

| Sr. | Pros Cons

Page 373

https://ijctjournal.org/

International Journal of Computer Techniques — Volume 12 Issue 5, September - October - 2025

A high level of vulnerability detection

- The professional version is
1 | accuracy and precision.

costly.

Advanced including functionality like
2 scanning, crawling and traffic
interception.

Extremely high
curves.

learning

TABLE 6: COMPARATIVE ANALYSIS OF WEB VULNERABILITY

A massively popular and well-

3 documented security technology.
C. Nikto
Nikto is a command line tool that consists of a

vulnerability scanner that is mainly used to identify old
software, bad configurations and the typical vulnerabilities of
the web server. Although it is quick and easy to apply, it
does not perform well in identifying sophisticated
vulnerabilities such as SQL Injection (SQLi) and XSS. It
also does not have a user-friendly graphical interface which
could also render it less attractive to developers with less
security knowledge [3].

TABLE 3: COMPARISON OF NIKTO'S SUITE’S STRENGTHS AND

WEAKNESSES.
Sr. Pros Cons
Contemporary vulnerability
1 Simple and fast to use. Lacks coverage (e.g. SQLi,
XSS).
Some users might find it

2 Sggﬁ?ﬁggfgv‘:& tlsl:tuold difficult to use command-line
& SelUPS- | interface (CLI).

Free and open-source.

D. Acunetix

Acunetix is an all-purpose commercial vulnerability
scanner that is very effective in identifying diverse
vulnerability types such as SQLi, XSS among others. It is
easy to use and thus attractive to those who develop it, but it
is expensive. In addition, the tool has a long scanning
process which occasionally yields false positives and might
also be time consuming compared to lighter and more

specialized tools [4].
TABLE 4: COMPARISON OF ACUNETIX’S STRENGTHS AND

WEAKNESSES.
Sr. Pros Cons
This is very costly,
1 Extensive scan properties and advanced | particularly when it
detection. comes to small
businesses.
User friendly graphical interface to In Some cases, false
2 positive may be a
developers.
problem.
3 Good support of contemporary
vulnerabilities.

E. Nets parker

The other commercial web vulnerability scanner is Nets
parker, which has very high vulnerability detection capability,
especially in complex and modern web applications. It is
regarded as user-friendly, but is also an enterprise-oriented
tool that is paid. Although it is effective, its major demerit is
that it is expensive, and the free version is not widely

available [5].
TABLE 5: COMPARISON OF NETSPARKER’S STRENGTHS AND

WEAKNESSES.
Sr. Pros Cons
1 High-quality vulnerability detection | Expensive alternative
and low-quality false positives. solutions.
2 user-friendly interface.
3 Powerful support on an enterprise-
level.

ISSN :2394-2231

https://ijctjournal.org/

SCANNERS.
Tool Strengths Limitations Ideal User
OWASP | Open-source, Complex setup, | Security experts
ZAP active difficult for | and researchers
community, beginners
extensive features
Burp High accuracy, | Expensive, steep | Professional
Suite advanced learning curve | penetration
features, well- | for non-experts testers
documented
Nikto Fast, simple, free, | Limited to | Beginners and
detects server | outdated those seeking fast
misconfigurations | software and | scans
basic
vulnerabilities,
no GUI
Acunetix | Comprehensive Expensive, Developers
scanning, user- | potential for | looking for a
friendly interface, | false positives user-friendly tool
supports modern
vulns
Nets Highly accurate, | Expensive, free | Enterprise teams
parker easy-to-use, version is | needing robust
enterprise-level limited security tools
support
Figure 1:

Weiium Eost, High Featurs

High Coat, Heh Feature
Soverags e

Goverse

High Cost, High Fasture:

Medium Tost, Figh Teasures

Migh Cost, High Teatures

High Cost, High Teatures

Figure 1: Cost vs. Feature Coverage Comparison of Web Vulnerability
Scanners

1) Cost vs. Feature Coverage Analysis:

If you want to include a formalized way of comparing the
cost of tools with their feature coverage (which is discussed
in your literature review and comparison), you could define a
cost-to-feature ratio.

Cost-to-Feature Ratio (CFR)

CFR = Cost
(1)

Where:

e Cost = The price of the vulnerability scanner.
e Feature Coverage = A quantitative measure of how

many vulnerabilities the scanner can detect (e.g.,
number of vulnerability types).

Feature Coverage

V. METHODOLOGY

In this study, the proposed research is an automated web
vulnerability scanner that would identify the most frequent
security vulnerabilities in web applications. The
methodology is composed of a number of major elements,
each with specific functions that collaborate with one another
to scan web application, detect vulnerabilities and provide
structured reports. It is a modular process with specific steps,
each with its functionality and is broken down into specific
steps to offer scalability and an ability to adapt to other web
applications.

A. Scanner Workflow
The scanner workflow should be systematic so that every
component of the workflow should do its job in an effective
manner. The general process may be illustrated as follows:
1) Input Target URL: The user enters a target URL
(web application URL) which it will scan.

Page 374

https://ijctjournal.org/

International Journal of Computer Techniques — Volume 12 Issue 5, September - October - 2025

2) Session Start: The scanner opens an HTTP session
with the target, and sets the correct headers to communicate
with the target.

3) Crawling: The scanner will traverse the site to
identify all the forms, links, and other endpoints that are
accessible and can be tested to have vulnerabilities.

4) Security Testing: Each form or endpoint that has
been discovered is then tested by the scanner with a set of
crafted payloads that will attempt to validate certain
vulnerabilities (e.g., SOL Injection, XSS, etc.).

5) Vulnerability Detection: The scanner examines the
response of the server to the payload and finds out any
potential vulnerabilities based on the known security
vulnerability patterns.

6) Reporting: Once the scan finishes, the scanner will
produce a well-formatted report in JSON format that
outlines all the vulnerabilities discovered including the level
of severity, location and description.

B. Steps for Creating a Diagram

Start: Input Target URL

Sessian Initialization

Crawling: Discover Forms
Links, Endpoints

v

Security Testing: Inject
Payloads

v

vl

Yes

Generate Report
Vulnerabiliies Detected

!

En

No Vulnerabilities Found

LIES:

Figure 2: Scanning Process
The picture given above is expected to be a
summary of the scanning done.

Input & Initialization
Module: Handles user input
(target URL) and session
setup

l

Crawling Module: Explores
and collects forms, links,
and endpoints

l

Vulnerability Testing
Module: Applies various
payloads for vulnerability
testing

l

Reporting Module:
Generates detailed scan
reports

[

End

Figure 3: Web Vulnerability Scanner Workflow

The following is a Flowchart of Web Vulnerability Scanner
Architecture. It starts with input and configuration of the

ISSN :2394-2231

https://ijctjournal.org/

session, followed by the endpoints scraped by the site.

Step-by-Step Breakdown of the Methodology
Breakdown of the Methodology in Steps.

1. Input Target URL: It is where the user initiates the
scanning process by entering the URL of the target web
application. This action is needed to initiate the process,
and the scanner waits before the input.

2. Session Initialization: After the URL is given, the
scanner initiates an HTTP session to initiate
communication with the target application. It transmits a
request to the server to kick start the session with proper
headers and cookies to set the system up to proceed with
subsequent interaction [1].

3. Crawling: The crawler module crawls the web
application pages, and retrieves URLs, forms, and
endpoints. Crawling aims at mapping the structure of the
webpage in order to direct the scanner on the all the
pertinent elements that may hold vulnerabilities [2]. The
crawler reconstructs links and communicates through
forms to obtain all the possible testing points.

4. Security Testing: Once all endpoints and forms have been
identified the scanner then tries to inject customized
payloads into the application. They are payloads which
are used to detect vulnerabilities such as SQL Injection,
Cross-site Scripting (XSS), Cross-site Request Forgery
(CSRF), and so on [3][5]. The scanner will mimic
possible attack by passing these payloads to the server to
observe their response.

5. Vulnerability Detection: This step requires analysis of
respond of the load to the server. In case the response of
the server to certain request is actually insecure (e.g
error messages, unexpected behaviour) it will trigger the
scanner to notify it as a probable problem. The scanner
identifies patterns of vulnerabilities that are known via a
set of predefined attack signatures that were to be
utilized during the reaction comparison 4.

6. Reporting: After the scan has been done the information
scanner constructs a detailed report in JSON format
containing the information of the following type about
each vulnerability found. Vulnerability type (e.g. SQLI,
XSS) Severity (e.g. high, medium, low) Description of
the problem Location in application URL (e.g. URL;
form field)

7. We feel that such a systematic approach is necessary to
make sure that the developers get results fast and could
act upon them [7].

C. Modular Implementation

The scanner has been implemented in a modular way that
allows it to be extended and maintained easily. All modules
are designed to be independent in a way that someday I can
add or modify a system without hurting the general fluidity.
For instance, we can insert the new payloads or types of
report generation into the testing of vulnerability modules
without affecting on others.

D. Vulnerability Detection Algorithm (Basic Logic)

The essence of the vulnerability scanning is to check reaction
of the server under attack against prepared payload. A

Page 375

https://ijctjournal.org/

International Journal of Computer Techniques — Volume 12 Issue 5, September - October - 2025

mathematical formula can formalize how a scanner detects a
vulnerability by comparing the server response to known
attack signatures.

Detection of Vulnerability
= _,[(payload response)])
Where:
e V =Total number of vulnerabilities detected.
e n=Number of payloads tested.
. (payload ,response) = Function that compares a

specific payload's response with predefined
vulnerability patterns.

e response = Server's response after injecting a
payload.

Explanation: The function fff returns a value indicating
whether a specific vulnerability (SQLi, XSS, etc.) is detected
in the server's response to a payload. The summation sums
up vulnerabilities detected for all payloads tested.

E. Vulnerability Severity Calculation:

If your scanner assigns severity levels to vulnerabilities
(e.g., high, medium, low), you can formalize how the
severity is assigned based on certain response characteristics,
such as error message analysis or exploitability.

Severity Rating
= , exploitability +
Where:
1) s = Severity score (from 0 to 10).
2) exploitability = A measure of how easily vulnerability
can be exploited.
3) impact= The potential damage or consequences of

o impact+ 3 likelihood (2)

vulnerability.

4) likelihood = The likelihood of the vulnerability being
exploited.

5) 2 3 = Weights assigned to each factor

based on its importance.

F. Conceptual Diagram Ideas

The Scanner The scanner starts with a target URL and
opening of a session. It crawls the website and injects
payloads to determine whether there are any vulnerabilities.
And lastly, it reports issues that it discovered or whether the
site is secure.

ISSN :2394-2231

https://ijctjournal.org/

Input Target LURL

Session Initialization

Crawling: Discover Forms,
Links, Endpoints

v

Security Testing: Inject
Payloads

v

Vulnerability Detection

Yes No

¢ |

Generate Report:

Vulnerabilities Detected B R Eone ‘

Te)

End

Figure 4: The Graphic of the Web Vulnerability Scanner More Workflow.

VI. RESULT AND ANALYSIS

The proposed web vulnerability scanner has been
subjected to a laboratory environment to test its strengths
against the most popular vulnerabilities: SQL Injection
(SQL1), Cross-site Scripting (XSS), Cross- Site Request
Forgery (CSRF) and others. The testing was conducted on
traffic of a number of intentionally weak applications such as
Damn Vulnerable Web Application (DVWA) among other
specifically designed testbeds. The scanner demonstrated that
it was able to identify a vast number of various forms of
vulnerabilities with a high degree of precision. It also
identified SQL injections on the login forms and cross site
scripting (XSS) on the search bars. SQLi payload injection,
such as the one below -OR 1=1--, was properly invoked on a
broad variety of test cases. Similarly, the scanner identified
reflected XSS vulnerabilities when it inserted malicious
payloads with script tags (e.g. alert(1)) in search query fields.

A. Performance Evaluation:

1) Speed: The scanner was significantly faster than by
hand; and a fraction of the time was taken to carry out
scans. RWScan Gallery[image]Even a bare scan of a small
web application (10-15 pages) took a couple of minutes, by
contrast, a manual penetration test of the same via hand-
testing would have taken hours.

2) Accuracy:The scanner was quite accurate, but the
number of false positive results was very small, particularly
in misconfigurations or minor vulnerabilities like security
headers. The overall detection rate was, however, superior
compared to other open source scanners such as Nikto and
OWASP ZAP since it decreased false positives through more
selective payloads.

Page 376

https://ijctjournal.org/

International Journal of Computer Techniques — Volume 12 Issue 5, September - October - 2025

3) Scalability: The scanning had been done in a
modular fashion that would enable the scanner to be scaled
to bigger applications. The scanner could detect and report
on vulnerabilities in all major components without any
significant overhead on applications up to 50 pages and
multiple complicated interdependencies.

TABLE 7: RESULTS TABLE

Target Vulnerability . s
Test Case URL/Form | Detected Severity | Description
SQL injection
SQL . SQL Injection . via the
Injection /login.php (High) High 'username’ field
(' OR 1=1-)
Malicious
/search.php? | Reflected XSS . script payload
XS8 query= (High) High executed in
search query
Missing CSRF Sl(l)l;nnission
CSRF /transfer.php Toker} Medium lacks CSRF
(Medium)
token
. Detailed error Stack | trace
Security . information
. /debug/ page Medium .
Misconfig . exposed in
(Medium)
erTor response
Login form
does not
Broken Nlogin.ph Insecure login Hich enforce HTTPS
Auth £1n-pip form (High) & and password
autocomplete is
enabled
Sensitive files
. Directory like
?
?rler:\:/cetr(;}l, {fl::W;lload.f Traversal High /etc/passwd
"" (High) accessible via
path traversal

The findings suggest that the scanner has been effective
in identifying the major vulnerabilities that are usually
prevalent in web applications, which is its intended goal of
enhancing web application security.

B. False Positive Rate (FPR) and False Negative Rate

(FNR):

If you are discussing the accuracy of your vulnerability
scanner, you can include formulas for the False Positive Rate
(FPR) and False Negative Rate (FNR). These are common in
automated testing to evaluate the effectiveness of detection

algorithms.
Formula 1: False Positive Rate (FPR)
FPR = —— A3)

Where:

1) FP = False Positives (incorrectly identified
vulnerabilities).

2) TN = True Negatives (correctly identified safe
components).
Formula 2: False Negative Rate (FNR)
Where:

1) FN = False Negatives (missed vulnerabilities).

2) TP = True Positives (correctly identified
vulnerabilities).

VII. FUTURE ENHANCEMENTS
Although the existing scanner version showed good
performance regarding identification = of typical
vulnerabilities, various areas of improvement are possible,

ISSN :2394-2231

https://ijctjournal.org/

which would enable the scanner to perform better.

A. Machine Learning Incorporation.

The introduction of machine learning (ML) models is one
of the most promising improvements, particularly in the
context of detecting vulnerabilities more effectively with
more advanced vulnerabilities or with lesser-known (zero-
day) vulnerabilities. Anomaly detection models are examples
of machine learning algorithms that can be trained to observe
patterns that might not be reflected in a set of predefined
signature or known attack payloads. ML models can identify
hidden actions that point to vulnerabilities that are not
detailed in the current scanner ruleset even when the data
sets are large and based on historical scans, allowing them to
detect these actions [13].

False positive real time detection can also be provided by
machine learning. In the future, the scanner would utilize a
model of supervised learning to use past scan outcomes and
distinguish between actual vulnerabilities and harmless
idiosyncrasy in the server responses, improving the overall
solution accuracy. The more it is trained, this would enable
the scanner to use new patterns of attack more effectively
and become more accurate at its observations all the time.

B. Constant Patrol and Intermittency.

Cloud compatibility is also another area that can be
improved. The wvulnerability scanner will need to be
optimized to be a smooth addition to cloud environments and
cloud-native infrastructure-as-code (IaC) pipelines as web
applications are transitioned to cloud-based infrastructures.
This would enable the organizations to undertake real-time
scanning of vulnerabilities on a continuous basis and to
identify vulnerabilities when they are being incorporated into
the development lifecycle. Cloud providers such as AWS,
Azure, and Google Cloud have their own set of challenges,
such as dynamic IP addresses and auto-scaling environments,
which could make vulnerability testing more difficult. The
scanner may be improved with cloud-specific modules that
may automatically adjust and identify these environments
[14].

Furthermore, the scanner could be introduced into the
continuous integration/continuous deployment (CI/CD)
pipelines to enable the automatic scanning of web
applications every time a code is pushed or updated. The
method does not only guarantee the detection of
vulnerabilities at an early stage of the development cycle, but
also allows continuous monitoring of deployed applications,
allowing proactive security even at the production stage.

C. Dashboards and Visualization Interactive.

An interactive dashboard can be introduced to visualize
the scan results to make the scanner more usable. The current
reports are usually fixed and need the developers to extract
the data through the Python language by reading JSON files.
A dashboard enabled to be interactive would enable security
teams to graphically examine the vulnerabilities identified
and prioritize their remediation process by filtering them in
terms of the severity. A heat map or other vulnerability
graphs could be used to visualize top priority vulnerabilities
by their impact, frequency and exploitable vulnerabilities.

D. Increase in Vulnerability Coverage.
Today’s scanner has broad coverage of most of the
known vulnerabilities and weaknesses in systems, but could

Page 377

https://ijctjournal.org/

International Journal of Computer Techniques — Volume 12 Issue 5, September - October - 2025

be expanded for more esoteric attacks. It could introduce
server-side request forgery (SSRF) as well as Insecure
Deserialization and more simply API security issues (eg
weak authentication or misconfigured API endpoints). Such
threats are increasingly popular in contemporary web
applications and are beneficial, if discovered, to the scanner
[15]. Furthermore, an API scanning module can be added
and the scanner can then be used to scan vulnerabilities that
only REST and GraphQL APIs (a typical web development
pattern today) have.

VIII. CONCLUSION

This research has developed an automatic web
vulnerability scanner for the solving of heightened concern
over web application security. The software is mainly
focused on finding wide-spread vulnerabilities but also
includes many other security checks as well such as SQL
Injection (SQLi), Cross-Site Scripting (XXS), Configuration
errors and more. The risk-based approach ensures that every
identified issue is beaten on its own terms by focussing on
the most relevant threats for web applications.

The scanner proved to be very effective in case of the
quick and accurate identification of the vulnerabilities
through the rigorous test in controlled settings. The scanner
was found to be more reliable and quicker compared to the
traditional manual testing option, and the bonus was that it
was less likely to be affected by human error. The tool is
designed in modules, and this enables it to be scaled to
accommodate a broad scope of web applications, between
small websites and more complex ones.

The fact that the scanner can produce detailed and
structured reports in the form of the JSON format gives the
developers actionable data of where the vulnerabilities it
identifies are, allowing them to respond immediately,
ensuring that their applications become more secure.
Although in some cases there were false positives especially
when minor misconfigurations were made, the overall
performance was impressive ensuring that the tool is useful
to developers and security professionals.

Moving forward, the scanner indicates that additional
developments could be made to the scanner, such as machine
learning to detect vulnerabilities more intelligently and cloud
compatibility to perform continuous monitoring of the
current development environment. This will not only
enhance the detection capabilities of the tool but also widen
applicability of the tool to newer web technologies and
dynamic environments.

To sum up, the study provides a powerful, convenient,
and affordable web vulnerability scanning tool, which has
the potential to become a key component in the current
endeavor to secure web-based applications against the more
advanced cyber threat.

REFERENCES

[1] Mohaidat, A. L., & Al-Helali, A. (2024). Web vulnerability scanning
tools: A comprehensive overview, selection guidance, and cyber
security recommendations. International Journal of Research Studies
in Computer Science and Engineering, 10(1), 8—15.

[2] Bazzoli, E., Criscione, C., Maggi, F., & Zanero, S. (2014). XSS Peeker:
A systematic analysis of cross-site scripting vulnerability scanners.
Politecnico di Milano. arXiv:1410.4207.

[3] Rajan, A., & Erturk, E. (2017). Web vulnerability scanners: A case
study. Eastern Institute of Technology. arXiv:1706.08017.

[4] Shamunesh, P., Vinoth, S., & Srinivas, L. N. B. (2023). Cybercheck —
OSINT & web vulnerability scanner. In Proceedings of the Second

ISSN :2394-2231

https://ijctjournal.org/

International Conference on Edge Computing and Applications
(ICECAA 2023).

[5] Al Anhar, A., & Suryanto, Y. (2021). Evaluation of web application
vulnerability scanner for modern web application. In 202/
International Conference on Artificial Intelligence and Computer
Science Technology (ICAICST).

[6] Ibrahim, R. Y., & Rosli, M. M. (2023). Evaluation of web application
vulnerability scanners using SQL injection attacks. In 2023 8th IEEE
International Conference and Workshops on Recent Advances and
Innovations in Engineering (ICRAIE).

[7] Sandberg, M., & Gunnarsson, E. (2024). Web vulnerability scanner:
Cybersecurity (Bachelor’s thesis). KTH Royal Institute of Technology.

[8] Sarpong, P. A., Larbi, L. S., Korsah, D. P., Abdulai, I. B., Amankwah,
R., & Amponsah, A. (2021). Performance evaluation of open source
web application vulnerability scanners based on OWASP benchmark.
International Journal of Computer Applications, 174(18), 15-22.

[9] Yudin, O., Kharchenko, V., & Pevnev, V. (2023). Scanning of web-
applications: Algorithms and software for search of vulnerabilities
“code injection” and “insecure design.” In Proceedings of the 12th
IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS).

[10] Chen, X., & Zhang, Y. (2024). Evaluation of automated vulnerability
scanning tools for modern web applications. International Journal of
Cybersecurity and Application, 29(3), 45-58.

[I1]Lee, S., & Kim, J. (2022). A comparative study of web vulnerability
scanners for identifying XSS and SQL Injection. Journal of
Information Security, 18(2), 115-130.

[12] Sharma, R., & Gupta, A. (2023). Enhancing vulnerability scanning with
machine learning integration. Computers & Security, 98, 102—114.
[13]Chen, X., & Zhang, Y. (2024). Evaluation of automated vulnerability
scanning tools for modern web applications. International Journal of

Cybersecurity and Application, 29(3), 45-58.

[14]Lee, S., & Kim, J. (2022). A comparative study of web vulnerability
scanners for identifying XSS and SQL Injection. Journal of
Information Security, 18(2), 115-130.

[15] Sharma, R., & Gupta, A. (2023). Enhancing vulnerability scanning with
machine learning integration. Computers & Security, 98, 102—114.

Page 378

https://ijctjournal.org/

	I.INTRODUCTION
	II.PROBLEM STATEMENT
	III.OBJECTIVES
	IV.LITERATURE REVIEW
	A.OWASP ZAP
	B.Burp Suite
	C.Nikto
	D.Acunetix
	E.Nets parker
	1)Cost vs. Feature Coverage Analysis:

	V.METHODOLOGY
	A.Scanner Workflow
	1)Input Target URL: The user enters a target URL (we
	2)Session Start: The scanner opens an HTTP session w
	3)Crawling: The scanner will traverse the site to id
	4)Security Testing: Each form or endpoint that has b
	5)Vulnerability Detection: The scanner examines the
	6)Reporting: Once the scan finishes, the scanner wil

	B.Steps for Creating a Diagram
	C.Modular Implementation
	D.Vulnerability Detection Algorithm (Basic Logic)
	E.Vulnerability Severity Calculation:
	1)s = Severity score (from 0 to 10).
	2)exploitability = A measure of how easily vulnerabi
	3)impact= The potential damage or consequences of vu
	4)likelihood = The likelihood of the vulnerability b
	5)�𝑤�1�,�𝑤�2�,�𝑤�3�​ = Weights assigned to each f

	F.Conceptual Diagram Ideas

	VI.RESULT AND ANALYSIS
	A.Performance Evaluation:
	1)Speed: The scanner was significantly faster than b
	2)Accuracy:The scanner was quite accurate, but the n
	3)Scalability: The scanning had been done in a modul

	B.False Positive Rate (FPR) and False Negative Rate
	1)FP = False Positives (incorrectly identified vulne
	2)TN = True Negatives (correctly identified safe com
	1)FN = False Negatives (missed vulnerabilities).
	2)TP = True Positives (correctly identified vulnerab

	VII.FUTURE ENHANCEMENTS
	A.Machine Learning Incorporation.
	B.Constant Patrol and Intermittency.
	C.Dashboards and Visualization Interactive.
	D.Increase in Vulnerability Coverage.

	VIII. CONCLUSION
	REFERENCES

