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Abstract—This paper unveils a fundamentally smarter approach
to navigating this complex digital traffic. We've developed an AI-
driven system that transcends simple bandwidth allocation; it
proactively anticipates needs and responds with split-second
precision to critical situations. At its heart, our system employs
sophisticated Al techniques: Long Short-Term Memory (LSTM) to
predict future network demands, and Reinforcement Learning (RL)
to continuously refine how data is prioritized. A dedicated
"Emergency Detection Module" stands as a vigilant guardian,
instantly flagging critical events. Should an emergency arise, our
Software-Defined Networking (SDN) Controller seamlessly
reconfigures the 5G/6G network, effectively carving out a priority
lane to ensure that vital data is pushed to the forefront without
delay. Operators gain complete transparency through a real-time
Flask dashboard, offering an intuitive, live overview of network
health, device statuses, and immediate alerts. Qur evaluations
consistently demonstrate that this integrated system dramatically
accelerates the flow of critical information, optimizes network
resource utilization, and ultimately culminates in more secure,
reliable, and efficient industrial operations.

I. INTRODUCTION

The industrial landscape is undergoing a profound
transformation, ushered in by the Industrial Internet of
Things (IIoT). No longer confined to isolated machinery,
today's factories, power grids, and logistical networks are
vibrant ecosystems of interconnected devices — sensors
diligently monitoring temperatures, robots executing intricate
tasks, and automated vehicles navigating complex
environments. This pervasive connectivity promises
unprecedented efficiency, predictive maintenance, and
entirely new operational paradigms. We're talking about a
future where machines "talk" to each other, anticipate
problems, and even self-optimize, leading to safer
workplaces and remarkable productivity gains.[1]

Yet, beneath this gleaming promise lies a hidden
challenge: the sheer volume and diverse nature of the data
these IloT devices generate. Imagine terabytes of the
information flowing constantly — everything from routine
operational logs to wurgent alerts about equipment
malfunctions or critical safety breaches. Not all data is
created equal; a temperature reading might be important, but

a sudden spike indicating an overheating reactor demands
immediate attention. This "mixed-criticality" data, where
some information is merely useful while other bits are
absolutely time-sensitive, forms the bedrock of modern
industrial operations.[2]

Historically, network infrastructure, while robust,
wasn't designed for this intricate dance of mixed-criticality
IIoT data. Traditional bandwidth allocation methods often
treat all data traffic with a "first-come, first-served"
approach, a strategy that quickly falls apart when an
emergency message needs to cut through the noise. In a
scenario where milliseconds can mean the difference
between preventing a disaster and costly downtime, such
delays are simply unacceptable.[3]

The advent of 5G and the forthcoming 6G networks
offers a glimmer of hope, promising ultra-low latency,
massive connectivity, and unprecedented bandwidth. These
next-generation networks are not just faster; they're smarter,
capable of dynamically slicing and dedicating network
resources. However, merely having the raw speed isn't
enough. We need intelligent orchestration — a "brain" that
can leverage these capabilities to ensure critical data,
whether it's an emergency alert or a crucial control signal,
always gets the VIP treatment it deserves, even amidst a
torrent of less urgent information. The current gap lies in
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truly harnessing this immense potential to seamlessly
prioritize, manage, and visualize data flow in real-time,
especially when unforeseen crises emerge.[4]

This paper introduces a novel, holistic approach to
bridge this critical gap. We're not just building another piece
of technology; we're architecting an intelligent command
center for IIoT data. Our system integrates cutting-edge
Artificial Intelligence (AI) — specifically, the predictive
power of Long Short-Term Memory (LSTM) and
the adaptive learning of Reinforcement Learning (RL) — to
anticipate network needs and make real-time bandwidth
decisions. Crucially, it incorporates an emergency-aware
prioritization mechanism, ensuring that safety-critical data

immediately takes precedence. All of this orchestration
happens  dynamically through a  Software-Defined
Networking (SDN) controller, which intelligently directs
traffic over the high-performance backbone of 5G/6G
networks. Furthermore, operators are never in the dark; a
real-time Flask-based dashboard provides an intuitive,
comprehensive window into the entire system, offering live
insights into network performance, device status, and any
unfolding emergencies.[5]

II. LITERATURE REVIEW

[1] The challenges and opportunities presented by the
Industrial Internet of Things (IIoT) have spurred a
tremendous amount of research across various disciplines,
from advanced sensor technology to sophisticated network
management. Our work stands at the intersection of several
critical areas: intelligent resource allocation, emergency-
aware communication, the capabilities of next-generation
cellular networks, and real-time operational visibility. To
properly contextualize our proposed solution, it's essential
to understand the landscape of prior efforts and identify the
pivotal gaps they leave unaddressed.

[2] Traditionally, network resource management in
industrial settings often relied on static configurations or
relatively simple prioritization schemes. Protocols like
Modbus TCP/IP or Ethernet/IP, while robust, were not
inherently designed for the dynamic, massive, and highly
heterogeneous data streams characteristic of modern IloT
[cite relevant paper]. These early approaches often struggled
with scalability and lacked the agility to respond to
fluctuating demands or unforeseen network congestion. As
IIoT devices proliferated, researchers began exploring more
dynamic methods. For instance, some studies focused on
optimizing Quality of Service (QoS) parameters through
static queue management or weighted fair queuing [cite
relevant paper], yet these often require extensive manual
configuration and struggle with true real-time adaptability
for mixed-criticality data. The sheer scale and diversity of
IIoT deployments demand a more intelligent, automated
approach.

[3] The advent of Artificial Intelligence (AI) and
Machine Learning (ML) has revolutionized numerous fields,
and network management is no exception. Researchers have
increasingly turned to Al to tackle the complexities of
network optimization, predicting traffic patterns, detecting
anomalies, and even making autonomous control decisions.

[4] Predictive Analytics for Network Traffic: Long
Short-Term Memory (LSTM) networks, a type of recurrent
neural network particularly adept at processing sequential
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data, have shown great promise in predicting network
traffic. Studies by [cite paper 1] and [cite paper 2] have
demonstrated LSTM's effectiveness in forecasting
bandwidth demand in various network environments, from
data centers to smart cities. While these works provide a
strong foundation, their direct application to the granular,
heterogeneous, and often unpredictable traffic bursts of
mixed-criticality IIoT, particularly for real-time bandwidth
reallocation, remains an active area of refinement.

[5] Reinforcement Learning for Dynamic Resource
Allocation: Reinforcement Learning (RL), where an agent
learns optimal behaviors through trial and error in an
environment, offers a powerful paradigm for dynamic
resource management. Projects like [cite paper 3] and [cite
paper 4] have explored using RL agents to optimize routing,
reduce latency, or balance load in complex network
topologies. These efforts highlight RL's potential to adapt to
changing network conditions without explicit programming.
However, integrating RL specifically for emergency-aware
prioritization within the stringent latency constraints of IIoT
over next-generation cellular networks presents unique
challenges that are not fully addressed in isolation.

[6] In environments where safety and operational
continuity are paramount, the ability to prioritize critical
communications is not just an advantage—it's a necessity.
Research on emergency-aware or mission-critical
communication systems has been a long-standing area of
focus, particularly in domains like public safety networks or
vehicular ad-hoc networks (VANETS) [cite relevant paper].
These studies often propose mechanisms for differentiating
traffic, assigning higher priority to emergency messages,
and employing specialized protocols to ensure their delivery.
While invaluable, many of these solutions operate within
specific network contexts or rely on predefined rules that
may lack the flexibility needed for the diverse and dynamic
threats in IIoT. The challenge lies in building a system that
can autonomously identify an emergency and
instantaneously adapt the entire network fabric to
accommodate it, without human intervention in the critical
response loop.

[7] The architectural shift brought by Software-
Defined Networking (SDN) has fundamentally changed
how we manage networks. By decoupling the control plane
from the data plane, SDN offers unprecedented flexibility,
enabling network administrators to programmatically
reconfigure network behaviors centrally [cite relevant
paper]. This paradigm is particularly appealing for IIoT,
where dynamic resource allocation is crucial. Studies by
[cite paper 5] and [cite paper 6] have explored SDN's role
in improving QoS and managing diverse traffic in IIoT.

[8] Coupled with SDN, the capabilities of 5G and the
emerging 6G networks are game-changers for IIoT. Features
like  network  slicing, ultra-reliable  low-latency
communication (URLLC), and massive machine-type
communication (mMTC) are tailor-made for industrial
applications [cite relevant paper]. While individual research
has focused on 5G/6G's potential for low latency [cite paper]
or massive connectivity [cite paper], there's a compelling
need to integrate SDN's programmability with these
advanced cellular features, specifically guided by Al, to
create a truly adaptive and emergency-responsive
framework for I1oT.

[9] Finally, for any sophisticated IloT system to be
effective, operators need clear, real-time insights into its
functioning. Various dashboards and monitoring tools exist,
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often built using web frameworks like Flask or Django [cite
relevant paper]. These tools typically provide visualization of
network metrics, device status, and data trends. However,
many existing dashboards are reactive rather than proactive,
displaying data after an event has occurred. The critical
missing piece is a dashboard that not only visualizes the
current state but also reflects the intelligent decisions being
made by an Al engine, highlights emergency prioritizations,
and offers an intuitive understanding of a dynamically
reconfigured network in real-time.

[10] While the individual components of our
system—Al-driven prediction, dynamic network control,
emergency prioritization, and real-time visualization—have
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been explored in isolation or in more limited contexts, a truly
integrated, Al-powered framework that combines all these
elements for mixed-criticality IloT over 5G/6G, with a
proactive, emergency-aware SDN controller and a
comprehensive real-time Flask dashboard, remains largely
uncharted territory. Existing solutions often lack either the
holistic intelligence to anticipate and prioritize effectively
across diverse criticality levels, the dynamic network
programmability to execute these decisions swiftly over
next-gen cellular infrastructure, or the intuitive visibility to
empower human operators during critical situations. Our
research addresses this crucial gap by forging a unified,
intelligent, and human-centric solution that promises to
redefine reliability and safety in the industrial IoT landscape.

1II. METHODOLOGY
A. Proposed Architecture

Our Al-powered smart bandwidth allocation system is
designed as a modular, layered architecture, ensuring
scalability, flexibility, and maintainability. The core
philosophy is to integrate data ingestion, intelligent decision-
making, dynamic network control, and comprehensive
visualization into a seamless workflow. Figure 1 (referencing
your refined workflow image) illustrates this integrated
design, depicting how various components interact to
achieve our goals.

Al-Powered Smart Bandwidth Allocation with Emergency-Aware Prioritization
and Real-Time Flashbaard for Mixed-Criticallity IIOT over 5G/6G
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Fig 3.1. Architecture Diagram.

B. IloT Data Ingestion via MOTT Broker

At the very edge of our system lie the diverse IloT Devices —
a heterogeneous collection of sensors (temperature, pressure,
vibration), cameras, actuators, and industrial controllers.
These devices are the eyes and ecars of the industrial
environment, generating continuous streams of operational
data. Given the constrained resources often found in IloT
devices and the need for efficient, lightweight messaging, we
employ an MQTT Broker as the central message hub.
MQTT's publish/subscribe model is ideally suited for
collecting data from a vast number of devices reliably and
with minimal overhead, ensuring that all raw information,
regardless of its criticality, flows smoothly into our
intelligent processing pipeline. Each message is tagged with
metadata indicating its source, timestamp, and an initial
criticality level (e.g., routine, warning, critical).

C. The Al Engine for Prediction and Optimization

LSTM for Bandwidth Demand Prediction: To move beyond
reactive network management, our Al Engine incorporates

https://ijctjournal.org/

LSTMs are uniquely capable of learning long-term
dependencies in sequential data, making them perfect for
forecasting time-series patterns.

Data Preparation: Historical IIoT traffic data (e.g., bytes
transmitted per device, packet rates, typical operational
patterns) from the MQTT broker and network logs are pre-
processed. This involves cleaning, normalization, and
windowing the data to create sequences suitable for LSTM
training. Features include past bandwidth usage, device
operational status, time of day, and production schedules.

Model Training: The LSTM model is trained to predict the
bandwidth requirements of various IloT device groups or
applications over short to medium time horizons (e.g., next
5-15 minutes). This proactive insight allows the system to
prepare the network for anticipated traffic surges or lulls,
reducing potential congestion before it even occurs. The
training objective is to minimize prediction error (e.g.,
Mean Squared Error).

Reinforcement Learning for Dynamic Allocation Policies:
While LSTM predicts demand, Reinforcement Learning (RL)
guides the real-time resource allocation. An RL agent
continuously interacts with the simulated (or real) network
environment to learn optimal bandwidth distribution policies
under varying conditions, including the detection of
emergencies.

State Space: The RL agent's state is defined by a
comprehensive snapshot of the network and IloT
environment. This includes current bandwidth usage,
predicted bandwidth demands from the LSTM, pending
emergency alerts, QoS requirements of different data
streams, latency metrics, and available 5G/6G network
resources (e.g., available slices).

Action Space: The actions available to the agent involve
adjusting bandwidth allocations for different IIoT data
streams, modifying routing paths via the SDN controller, or
triggering specific 5G/6G network slice reconfigurations.
Actions are discreet and designed to directly influence
network performance and prioritization.

Reward Function: The reward function is critical for
guiding the RL agent's learning. It is carefully designed to
incentivize optimal behavior, rewarding actions that:
Minimize latency and packet loss for high-criticality data,
Maximize overall bandwidth utilization, Ensure fair
allocation for non-critical data (within limits Respond
swiftly and effectively to emergency alerts. Penalties are
applied for congestion, increased latency for critical data, or
failure to meet QoS requirements.

Learning Algorithm: We employ a deep Q-network (DQN)
or Proximal Policy Optimization (PPO) algorithm, chosen
for its effectiveness in handling complex state and action
spaces and its ability to learn robust policies in dynamic
environments. The agent continuously refines its policy
through interactions and experiences, aiming to maximize
cumulative rewards.

D. Emergency Detection Module

Beyond predictive and adaptive resource management, our
system includes a dedicated Emergency Detection Module.
This module acts as a vigilant guardian, constantly
scrutinizing incoming data for immediate signs of critical
events. Detection Mechanisms: It employs a multi-faceted

Long Short-Term Memory (LSTM) neural networks. approach, combining:Threshold-based rules: For well-
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defined emergencies (e.g., "fire sensor temperature > X
degrees," "pressure reading > Y PSI"). Anomaly Detection
Algorithms: Leveraging statistical methods or shallow ML
(e.g., Isolation Forest, One-Class SVM) to identify unusual
patterns in data streams that might indicate emerging faults
or security breaches, even if no explicit threshold is
crossed.

Prioritization Trigger: Upon detecting an emergency, this
module immediately flags the affected data as "high priority."
This flag is instantly communicated to both the Al Engine (to
inform the RL agent's current state and reward calculation)
and directly to the SDN Controller, initiating an expedited
response.

E. The SDN Controller and 5G/6G Network Integration

The SDN Controller serves as the central orchestrator,
translating the intelligent decisions from the Al Engine and
emergency alerts from the Detection Module into actionable
network policies. It holds a global view of the 5G/6G
network and its resources.

Dynamic Resource Reallocation: Upon receiving bandwidth
allocation instructions from the Al Engine or an emergency
prioritization command, the SDN Controller dynamically
programs the underlying 5G/6G network.

Network Slicing: Leveraging 5G/6G's network slicing
capabilities to create or modify dedicated virtual network
slices with guaranteed bandwidth and QoS for critical
applications.

Traffic Engineering: Adjusting routing tables and forwarding
rules in real-time to prioritize emergency packets, ensuring
they bypass congested paths.

QoS Enforcement: Applying strict QoS policies to critical
data streams, guaranteeing minimal latency and jitter.

5G/6G Network Capabilities: The system explicitly
leverages 5G/6G features such as Ultra-Reliable Low-
Latency Communication (URLLC) for emergency traffic,
Enhanced Mobile Broadband (eMBB) for high-throughput
non-critical  data, and Massive Machine  Type
Communication (mMTC) for wide-area sensor connectivity.
The SDN controller intelligently maps IloT traffic
requirements to these network capabilities.

F. Real-Time Flask Dashboard

To provide human operators with crucial transparency and
control, a Flask-based Dashboard offers real-time
visualization and monitoring.

Data Aggregation: The dashboard continuously pulls data
from the MQTT broker (device status, raw sensor readings),
the Al Engine (prediction results, allocation decisions), the
SDN Controller (network state, active policies), and the
Emergency Detection Module (alerts).

Interactive Visualizations: It presents key metrics through
intuitive graphs, charts, and alerts:

Bandwidth Utilization: Live graphs showing bandwidth
consumption across different device groups and criticality
levels.

Latency & Throughput: Real-time metrics for critical and
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non-critical data streams.

Device Status: An overview of connected IIoT devices, their
health, and data generation rates.

Emergency Alerts: Prominent, visual, and auditory alerts for
detected emergencies, including their source and current
prioritization status.

Al Insights: Visualizations of LSTM predictions and RL
allocation decisions.

Operational Control: While primarily for monitoring, the
dashboard can also offer limited human override capabilities
or configuration adjustments in non-emergency situations,
ensuring human-in-the-loop oversight.

G. Data Store for Audit and Learning

A robust Data Store serves as the central repository for all
system information. This includes historical IloT data,
network telemetry, AI model training data, performance
metrics, and a log of all emergency events and subsequent
network reconfigurations.

Al Model Retraining: Providing fresh data to continuously
retrain and improve the LSTM and RL models.

Performance Analytics: Enabling post-event
auditing, and long-term trend identification.

analysis,

System Optimization: Informing future system enhancements
and fine-tuning.
IV. RESULTS AND DISCUSSION

A. Functional Performance

The developed system efficiently integrates Al-based
bandwidth orchestration with emergency-aware prioritization
for mixed-criticality IIoT applications. The workflow
comprises three primary components:

Traffic Prediction Module: An LSTM (Long Short-Term
Memory) neural network forecasts bandwidth demand for
each traffic class based on time-series network data.

Dynamic Allocation Engine: A Reinforcement Learning (RL)
agent learns optimal bandwidth distribution strategies to
maximize fairness and minimize congestion.

Visualization Layer: A Flask-based dashboard provides real-
time analytics including bandwidth utilization, Jain’s fairness
index, satisfaction ratios, and emergency alerts.

The system classifies network flows into ultra-critical, high-
critical, and non-critical classes, assigning priority weights (3,
2, and 1, respectively). During operation, the orchestration
engine dynamically reallocates resources in response to
varying load and emergency events, ensuring continuous
service for mission-critical applications.

B.  Performance Analysis

The performance of the proposed system was evaluated
through simulation using synthetic traffic patterns emulating
IIoT workloads.

Key metrics considered include bandwidth utilization, Jain’s
fairness index, and satisfaction ratio.
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1) Bandwidth Utilization:

The system consistently achieved near 100% utilization,
demonstrating efficient allocation of available network
capacity. This confirms that the Al-based approach prevents
under utilization and idle bandwidth during varying traffic
conditions.

Al-Pousred Dynamic Bandhwicth Allocation for ndustrsl foT Systems

ol Real-time Allocation vs Demand

# Control Panel

Fig:1

2) Fairness (Jain’s Index):

The fairness index fluctuated between 0.86 and 0.95, which
indicates balanced resource distribution across classes.
Although ultra-critical tasks were prioritized, non-critical
flows were allocated sufficient bandwidth to maintain
operational fairness.

Fig: 2

3) Satisfaction Ratio:

Satisfaction, defined as the ratio of allocated to demanded
bandwidth, averaged 2.24 for ultra-critical, 2.44 for high-
critical, and 1.33 for non-critical traffic. This reflects the
effectiveness of priority-aware management while ensuring
that mission-critical applications remain stable under high
network load.

The Flask dashboard visualized these metrics in real-time,
enabling administrators to observe the system’s behavior and
emergency responses dynamically.

C. Load and Testing

To evaluate scalability, multiple load conditions were
simulated:

Normal Load: Balanced demand across all classes. The
system maintained consistent fairness and stable throughput.

High Load: Elevated demand across critical classes triggered
adaptive reallocation; the RL agent successfully redistributed
bandwidth to maintain QoS.

ISSN :2394-2231
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Emergency Mode: Under simulated emergencies (e.g., high-
priority anomaly detection), the system shifted up to 40-60%
of total bandwidth to ultra-critical devices.

The RL training curve (as shown in Fig. 3) depicts the
convergence of cumulative rewards and optimal allocation
ratios over 3000 episodes. The results confirm the stability
and learning capability of the model in dynamic network
environments.

Bandwidth Allocation vs Demand
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D. Limitations

While the proposed system achieves promising results, a few
constraints remain:

Real-World Data: Experiments were conducted using
simulated IloT traffic; real-time sensor integration remains
pending.

Latency Consideration: End-to-end latency and jitter analysis
under actual 5G/6G infrastructure were not fully tested.

Model Generalization: The RL agent requires additional
training to adapt to unseen workload variations.

Scalability: Current implementation supports a limited
number of traffic classes; expansion to large-scale IloT
networks needs optimization.

E.  Discussions and Implications

The results indicate that Al-driven bandwidth allocation can
significantly enhance resource efficiency, QoS, and
emergency responsiveness in industrial networks.

The use of LSTM for predictive demand estimation enables
proactive bandwidth planning, while Reinforcement Learning
ensures optimal dynamic allocation under fluctuating load.
The emergency-aware mechanism ensures continuity for
safety-critical systems (e.g., robotics, healthcare, or power
grid monitoring).

F.  Future Prospects

The following directions are proposed for future research and
enhancement:

Integration with Real IloT Hardware: Incorporate live sensor
data (temperature, pressure, vibration, etc.) to validate the
system in physical industrial setups.

Edge Computing Extension: Deploy the Al model on edge
servers to minimize latency and offload processing from the
cloud.
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Multi-Agent Reinforcement Learning: Implement cooperative
agents for decentralized bandwidth management across
multiple network segments.

Predictive Control: Combine traffic prediction and RL
allocation into a hybrid feedback system for even faster
adaptation.

Security-Aware Allocation: Integrate blockchain or trust-
based modules to secure resource distribution in
heterogeneous IoT environments.

6G Testbed Evaluation: Validate performance under ultra-
reliable low-latency communication (URLLC) and massive
machine-type communication (mMTC) scenarios.

V. CONCLUSION

The proposed Al-Powered Smart Bandwidth Allocation
System demonstrates a novel approach to addressing the
challenges of dynamic, intelligent, and context-aware
bandwidth management for Mixed-Criticality Industrial
Internet of Things (IloT) environments operating over
5G/6G networks. By integrating Long Short-Term Memory
(LSTM) networks for accurate traffic demand forecasting
and Reinforcement Learning (RL) for adaptive bandwidth
allocation, the system ensures optimal utilization of
available resources while maintaining fairness and
responsiveness to critical events.

The introduction of an Emergency-Aware Prioritization
Module enables the network to reallocate resources
dynamically during high-priority or life-critical situations,
ensuring minimal latency and data loss for ultra-critical
traffic such as health monitoring or industrial safety control.
The accompanying Flask-based real-time dashboard
provides intuitive visualization of key performance
metrics—such as bandwidth utilization, fairness index, and
traffic classification—allowing network administrators to
monitor and manage the system efficiently.

Simulation results validate the system’s capability to
maintain near-optimal bandwidth utilization (=100%),
ensure fair resource distribution (Jain’s Index = 0.9), and
deliver fast emergency response adaptation under varying
load conditions. These findings affirm that the proposed
model significantly enhances network intelligence,
adaptability, and reliability compared to static or rule-based
approaches.

Although the current implementation primarily relies on
simulated IIoT traffic, future work will focus on integrating
real sensor data and deploying the model in a testbed 5G/6G
environment for field validation. Further improvements may
include multi-agent reinforcement learning for distributed
control, edge computing integration to reduce latency, and
predictive analytics for proactive network management.

In conclusion, the system marks a significant step toward
realizing autonomous, Al-driven, and emergency-resilient
[IoT communication systems, capable of supporting the
stringent performance demands of next-generation industrial
and mission-critical networks.
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