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Abstract:

This paper is presents a novel evaluation procedure for the settling time, delay time and rise time as
important time-based characteristics of critically damped second-order-like dynamic systems with 0/2 and
1/2 orders. The time-based characteristics are defined by simple analytical model giving the characteristic
as proportional to the reciprocal of the system natural frequency for 0/2 systems. Polynomial models is
fitted for each characteristic against the time constant of the simple zero of the 1/2 dynamic system. The
evaluation procedure finds optimal values for the 1/2 dynamic system natural frequency. The feasibility of
the proposed approach is examined using two case studies where the time-based characteristics are
compared (exact and present) with statistical measures.

Keywords — Critically damped second-order-like dynamic systems, Step time response, Step time
response characteristics, 0/2 second-order systems, 1/2 second-order systems.
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I. INTRODUCTION
A lot of industrial processes and other

applications can be dynamically classified as
second-order-like processes. Because critically
damped second order dynamic systems have no
overshoot and fast step time response, this research
work is concentrated only on the characteristics of
critically damped second-order systems. We start
by presenting a simple literature review about the
subject since 2004 :

MIT (2004) investigated the transient time
response of first and second-order systems. They
presented the unit step time response of second-
order control system having damping ratio from 0.1
to 0.707(underdamped), 1 (critically damped and
1.5-5 (overdamped). They did not present any
mathematical expressions for the characteristics of
the second-order step time response [1]. Angelele
(2011) investigated the time response of first and

second-order dynamic systems with special
concentration on mechanical systems starting with
impulsive time response, then ramp time response
and step time response. He did not refer to the time-
based characteristics of the step time response of
second order systems [2]. Swarnkar, Jain and Nema
(2011) used a model reference adaptive controller
with adaptation gain to control a second-order
process having 0.163 damping ratio and 24.5 rad/s
natural frequency providing 60 % maximum
overshoot without control. They did not provide
any analytical relationships for the time-based
characteristics of the second-order process step
response [3]. Paja, Gonzalez and Mentes (2013)
proposed a procedure to accurately calculate the
settling time of second-order systems for any
damping ratio and natural frequency. They outlined
that some authors proposed using explicit equations
to calculate the settling time which can introduce
significant errors depending on damping ratio and
natural frequency of the second-order system. They
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presented the equations given by Ogata [5] and Kue
[6] for underdamped second-order systems [4].
El-Hussieny (2016) analyzed the step time

response of second-order systems. He presented
analytical relationship for the settling time as
function of system damping ratio and natural
frequency for underdamped systems with 2%
tolerance. He did not handle the cases of critical
and overdamped systems [7]. Rachides (2017)
investigated the transient time response of first and
second-order systems. He presented the transient
response specifications of underdamped second-
order systems including equations for the rise time,
peak time and settling time [8]. Mustansiriyah
University (2020) analyzed a single-loop block
diagram producing a standard 0/2 second-order
control system. They presented the unit step time
response of the 0/2 second-order system for
damping ratio of 0 to 0.8 (underdamped), 1
(critically damped) and 2 (overdamped). They
presented the transient response specifications for
underdamped second-order systems. They derived
analytical equations for the rise time, peak time ,
maximum overshoot and settling time for
underdamped systems [9].
Babu et al. (2021-2022) investigated the time

response analysis of control systems including that
of a second-order systems. They provided
mathematical equations for the delay time, rise time,
peak time, maximum overshoot and settling time
for 2% and 5 % tolerance for underdamped second-
order systems [10]. Dorf and Bishop (2022) in their
book about ‘modern control systems’ presented the
performance of second-order systems where they
presented the time step time response for damping
ratio from 0.1 to 0.7 (underdamped), 1 (critical
damping) and 2 (overdamped) systems. They
presented equations for the settling time, peak time,
maximum overshoot and rise time for underdamped
second-order systems [11]. Stacco (2023) used a
closed-form metrics of normalized second-order
system to derive a simple design procedure to
identify second-order approximation with most
relevant dynamic characteristics of the target
system. They applied their approach to
underdamped and overdamped second-order
systems from its step response. They presented
equations for the peak time, settling time, damping

ratio for a specific natural frequency, maximum
overshoot and rise time for underdamped systems.
[12].
Cheung (2024) investigated the step time

response of second-order systems of the 0/2 type
and presented their step time response for damping
ratio of: 0.1, 0.2, 0.5, 1, 2 and 4. He presented a unit
step time response for 0.2 damping ratio and 0.25,
0.5, 1, 2 and 4 natural frequency. He did not present
any mathematical expressions for the time-based
characteristics of the second-order systems [13].
Malczyk (2025) investigated the properties and
performance of second-order systems and presented
the unit step time response for damping ratio in the
range 0-2 (underdamped, critical damping and
overdamped). For underdamped second-order
systems he presented equations for the rise time,
peak time, maximum overshoot and settling time
[14.].

II. CRITICALLY DAMPED 0/2 SECOND-
ORDER DYNAMIC SYSTEM

A lot of dynamic systems exhibit 0/2 overdamped
second-order dynamic model characteristics in
industrial engineering [15], mechanical engineering
[16], aeronautical engineering [17], automotive
engineering [18], locomotive engineering [19], civil
engineering [20] and biomedical engineering [21].
The transfer function of a 0/2 second-order dynamic
system , Gds1(s) is given by [5], [6], [11]:

2 2 2
1( ) / ( 2 )ds n n nG s s s     (1)

Closed-form equations for the settling time and
other characteristic functions are covered for
underdamped second-order systems by a large
number of authors (e.g. [1], [5], [6], [7], [8], [9],
[10], [11], [12] and [14]. Critically damped second-
order systems have outstanding characteristics
including zero maximum overshoot and minimum
settling time. Those characteristics are very useful
in tuning some controllers or compensators for first
and second-order processes. A critically damped
dynamic system has a unit step time response, c1(t)
given by [14]:
1( ) 1 (1 )exp( )n nc t t t     (2)
Settling Time, Ts:
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The settling time of a step time response of a
dynamic system is the time after which the time
response settles within a ± 2% tolerance. With
critically damped dynamic systems, this reduces to
the intersection of the unit step time response with a
0.98 line. At t = Ts, Eq.2 gives:
(1 )exp( ) 0.02 0n s n sT T     (3)
Eq.3 is a nonlinear equation in the dynamic system
settling time. For a specific value of the system
natural frequency, it is solved by the MATLAB
command ‘fsolve’ [22]. The application of ‘fsolve’
to solve equation 3 (giving the settling time Ts) for
natural frequency, ωn in the range 1≤ ωn ≤10 rad/s.
The results are given in Table I with the parameter
KTs (Tsωn).

TABLE I
SETTLING TIME OF THE 0/2 CRITICALLY DAMPED

SECOND-ORDER DYNAMIC SYSTEM
ωn (rad/s) Ts (s) KTs

1 5.8340 5.8340
2 2.9200 5.8400
3 1.9446 5.8338
4 1.4584 5.8336
5 1.1668 5.8701
6 0.9783 5.8701
7 0.8335 5.8345
8 0.7300 5.8400
9 0.6483 5.8343
10 0.5835 5.8350

ωn: System natural frequency
Ts: System settling time for 2% tolerance.
KTs: Settling time gain in: Ts= KTs/ωn

It is obvious from Table I that the gain KTs has
very close values for the ωn range investigated. The
‘mean’ command of MATLAB [23] is used to
provide the mean value of the gain KTs and the ‘std’
command [24] is used to provide its standard
deviation about its mean value. The two parameters
for KTs are as follows:

5.8355, 0.00259Ts mean TsK St Deviation    (4)

Rise Time, Tr:
The rise time of a step time response of a dynamic
system is the time after which the time response
rises from 10 % to 90 % of its steady-state value
[11] . With critically damped dynamic systems, this
reduces to the intersection of the unit step time
response with a 0.10 line for Tr1 and 0.90 line for
Tr2 where the rise time Tr will be Tr2-Tr1 given from
the two equations:

For Tr1:
1 1(1 )exp( ) 0.9 0n r n rT T     (5)

For Tr2:
2 2(1 )exp( ) 0.1 0n r n rT T     (6)

Eqs.5 and 6 are nonlinear equations in the dynamic
system rise time. For a specific value of the system
natural frequency, it is solved by the MATLAB
command ‘fsolve’ [22]. The application of ‘fsolve’
to solve Eqs.5 and 6 (giving the rise time elements
Tr1 and Tr2) for natural frequency, ωn in the range 1
≤ ωn ≤ 10 rad/s. The results are given in Table II
with Tr=Tr2-Tr1 and the parameter KTr =Trωn.

TABLE II
RISE TIME OF THE 0/2 CRITICALLY DAMPED

SECOND-ORDER DYNAMIC SYSTEM
ωn

(rad/s)
Tr1 (s) Tr2 (s) Tr (s) KTr

1 0.5320 3.8900 3.3580 3.3580
2 0.2660 1.9448 1.6788 3.3577
3 0.1772 1.300 1.1227 3.3683
4 0.1330 0.9725 0.8395 3.3580
5 0.1063 0.7779 0.6716 3.3582
6 0.0886 0.6483 0.5596 3.3580
7 0.0760 0.5557 0.4797 3.3579
8 0.0665 0.4862 0.4197 3.3576
9 0.0591 0.4322 0.3731 3.3580
10 0.0532 0.3885 0.3353 3.3532

ωn: System natural frequency
Tr1: System first rise time for 10 % time response.
Tr2: System second rise time for 90 % time response.
Tr: System rise time (Tr2-Tr1).
KTr: Rise time gain in: Tr= KTr/ωn

It is obvious from Table II that the gain KTr has
very close values for the ωn range investigated. The
‘mean’ command of MATLAB [23] is used to
provide the mean value of the gain KTs and the ‘std’
command [24] is used to provide its standard
deviation about its mean value. The two parameters
for KTr are as follows:

3.3585, 0.00392Tr mean TrK St Deviation    (7)

Delay Time, Td:
The delay time of a step time response of a dynamic
system is the time after which the time response
reaches 50 % of its steady-state value [11]. With
critically damped dynamic systems, this reduces to
the intersection of the unit step time response with a
0.5 line. At t = Td, Eq.2 gives:
(1 )exp( ) 0.5 0n d n dT T     (8)
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Eq.8 is a nonlinear equation in the dynamic system
delay time. For a specific value of the system
natural frequency, it is solved by the MATLAB
command ‘fsolve’ [22]. The application of ‘fsolve’
to solve Eq.8 (giving the delay time Td) for natural
frequency, ωn in the range 1 ≤ ωn ≤ 10 rad/s. The
results are given in Table III with the parameter KTd

(Tdωn).
TABLE III

DELAY TIME OF THE 0/2 CRITICALLY DAMPED
SECOND-ORDER DYNAMIC SYSTEM

ωn (rad/s) Td (s) KTd

1 1.6783 1.6783
2 0.8392 1.6783
3 0.5595 1.6783
4 0.4196 1.6783
5 0.3356 1.6783
6 0.2797 1.6782
7 0.2397 1.6783
8 0.2098 1.6784
9 0.1865 1.6783
10 0.1678 1.6783

ωn: System natural frequency
Td: System delay time.
KTd: Delay time gain in: Td= KTd/ωn

It is obvious from Table III that the gain KTd has
very close value to 1.6783 for the ωn range
investigated. The ‘mean’ command of MATLAB
[23] is used to provide the mean value of the gain
KTd and the ‘std’ command [24] is used to provide
its standard deviation about its mean value. The two
parameters for KTd are as follows:

1.6783, 0.000052Td mean TdK St Deviation    (9)

Case Study 1:
To investigate the efficiency of the present

procedure in defining the time-based characteristics
of overdamped second-order systems of type 0/2 we
consider a typical application from biomedical
engineering where an I-first order, 1/2
compensators and a PD-PI controller were used to
control the human blood pCO2 [25]. The author
used the zero/pole cancellation techniques to assign
some of the I-first order compensator parameters
and came out with a standard 0/2 overdamped
second-order transfer function for the closed-loop
control system having 0.20833 rad/s natural
frequency. The step time response of the control
system for a unit step input (desired pCO2 change)

is obtained using the ‘step’ and ‘plot’ commands of
MATLAB [26] as shown in Fig.1.

Fig.1 pCO2 step time response (case study 1).

The exact time-based characteristics of the
control system step time response are obtained
using the ‘stepinfo’ command of MATLAB for rise
and settling time [27] and the time response plot in
Fig.1 for the delay time. The characteristic
parameters (Ts, Tr and Td) using the technique
presented in this research work for critically
damped second-order-like dynamic systems are
obtained my dividing the derived characteristic gain
in Eqs.4, 7 , 9 by the natural frequency of the
dynamic system. The results are presented and
compared in Table IV.

TABLE IV
NUMERICAL CHARACTERISTICS OF A 0/2 DYNAMIC

SYSTEM (CASE STUDY 1)
Charact-
erustic

Ts (s) Tr (s) Td(s)

Exact 28.00418 16.12028 8.0567
Present
Equation
(Ti=Ki/ωn)

4 7 9

Present
value

28.0107 16.1213 8.0561

Error
(exact –
present)

-0.00652 -0.00108 0.00060

% Error -0.0232 -0.0067 0.0074

Ti: Characteristic time parameter.
Ki: Characteristic gain parameter.
Tr, Td, Ts: Rise, delay, settling times.
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III. CRITICALLY DAMPED 1/2 SECOND-
ORDER DYNAMIC SYSTEM

A lot of dynamic systems exhibit 1/2 overdamped
second-order dynamic model characteristics in
control engineering [28], power generation
engineering [29], boiler engineering [30],
automotive engineering [31], [32], marine
engineering [33] and biomedical engineering [34].
The transfer function of a 1/2 second-order dynamic
system, Gds2(s) is given by:

2 2 2
2 ( ) ( 1) / ( 2 )ds n z n nG s T s s s      (10)

Where Tz is the time constant of the 1/2 second
order dynamic system simple zero.
Using inverse Laplace transformation, the unit

step time response of the 1/2 second order dynamic
system defined by Eq.10 (with a unit damping
ration for critical damping) is given by [35]:

2
2 ( ) 1 exp( ) ( / )[1 ( / )] exp( )c t at a b b a t at      (11)
Where: a = ωn and b = 1/Tz.
The natural frequency ωn in Eq.11 has vital effect

on the step time response of the dynamic system.
Therefore, it is essential to optimize its value for
faster step time response without maximum
overshoot. The results are casted in the form of a
second-order polynomial determined by the author
using MATLAB command ‘polyfit’ [36] as follows:

20.002493 0.0566086 0.453383n z zT T    (12)
With 0.9995 correlation coefficient.
The time-based characteristics of the 1/2 dynamic

system (Ts, Tr and Td) are obtained using the same
procedure applied to the 0/2 critically damped
second order dynamic system. The results are
presented in Table V for the time-based
characteristics of the 1/2 critically damped second
order dynamic systems for ωn, Ts, Td and Tr against
the time constant Tz of the system simple zero in
the range: 0.5 ≤ Tz ≤ 10.

TABLE V
TIME-BASED CHARACTERISTICS OF THE

CRITICALLY DAMPED 1/2 SECOND-ORDER DYNAMIC
SYSTEM

Tz (s) ωn (rad/s) Ts (s) Td (s) Tr (s)
0.5 0.420 13.0125 3.4769 7.8874
1 0.485 13.1721 3.0834 7.8355
2 0.350 13.2062 2.6915 7.9566
3 0.310 13.4446 2.3997 7.5747
4 0.266 13.7067 2.4459 7.3589
5 0.230 14.1063 2.6043 8.1038

6 0.201 14.3211 2.8586 8.7757
7 0.180 15.0028 3.0079 9.0535
8 0.162 15.6149 3.2373 9.6158
9 0.148 15.9974 3.4346 10.0595
10 0.135 16.9764 3.7077 10.7817

Tz: 1/2 system zero time constant
ωn: 1/2 dynamic system natural frequency.

Each time-based characteristic is related to ωn

through the relation Kij/ωn as we did with the 0/2
overdamped second-order system where Kij is the
gain corresponding to each time-based
characteristic parameter. The values of Kij for
settling time, delay time and rise time against Tz is
given using data in Table V and presented in Table
VI.

TABLE VI
GAIN PARAMETER OF THE TIME-BASED

CHARACTERISTICS OF THE CRITICALLY DAMPED 1/2
SECOND-ORDER DYNAMIC SYSTEM
Tz (s) KTs KTd KTr

0.5 5.4652 1.4603 3.3127
1 5.3347 1.2488 3.1734
2 4.6222 0.9420 2.7848
3 4.1678 0.7439 2.3482
4 3.6460 0.6506 1.9575
5 3.2444 0.5990 1.8639
6 2.9072 0.5717 1.7551
7 2.7005 0.5414 1.6296
8 2.4305 0.5244 1.5577
9 2.3676 0.5083 1.4881
10 2.2918 0.5005 1.4555

KTs: Settling time gain parameter.
KTd: Settling time gain parameter.
KTr: Settling time gain parameter.

It is obvious from Table VI that the time constant
gain Kij has a decreasing nature with the zero time
constant Tz. Therefore, a polynomial model is
recommended for this variation as follows:
For settling time:
KTs =0.0330783Tz2-0.691855Tz+5.893862 (13)
With 0.9991 correlation coefficient.
For delay time:
KTd =0.0003637Td4-0.0106717Td3+0.1171805Td2-
0.5913639Td+1.7305581 (14)
With 0.9999 correlation coefficient.
KTr =-0.00017514Tr3+0.0539803Tr2-0.5913639Tr

+3.6591019 (15)
With 0.9967 correlation coefficient.

Case Study 2:
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To investigate the efficiency of the present
procedure in defining the time-based characteristics
of critically damped second-order systems of type
1/2 we consider a dynamic system with a model
defined as a 1/2 critically damped second-order
system having Tz = 5.5 s. The technique presented
in the present work is applied as follows:

- First of all the optimal natural frequency is
assigned using Eq.12 as:

0.21745 /n rad s  (16)
- The settling time, delay time of the dynamic

system is obtained using Eqs.13, 14 and 15
respectively and given by:

14.20672, 2.66778, 8.2229s d rT T T s   (17)
- The unit step time response of the dynamic

system is obtained using Eq.10 for unit
damping ratio, 5.5 s zero time constant and
natural frequency of Eq.16 using the
MATLAB ‘step’ command [26] as shown in
Fig.2.

Fig.2 Step time response of a 1/2 dynamic system (case
study 2).

The exact time-based characteristics of the
control system step time response are obtained
using the ‘stepinfo’ command of MATLAB for rise
and settling time [27] and the time response plot in
Fig.2 for the delay time. The characteristic
parameters (Ts, Tr and Td) using the technique
presented in this research work for overdamped
second-order-like dynamic systems are obtained by
dividing the derived characteristic gain in Eqs.13,
14 , 15 by the natural frequency of the dynamic
system. The results are presented and compared in
Table VII.

TABLE VII
NUMERICAL CHARACTERISTICS OF A 1/2 DYNAMIC

SYSTEM (CASE STUDY 2)
Charact-
erustic

Ts (s) Tr (s) Td(s)

Exact 13.8768 2.6380 8.1116
Present
Equation
(Ti=Ki/ωn)

13 14 15

Present
value

14.2067 2.6678 8.2229

Error
(exact –
present)

-0.32992 -0.0298 -0.1113

% Error -2.3775 -1.1296 -1.3721

IV. CONCLUSIONS
- This research paper investigated a novel

evaluation procedure for the characteristics
of critically damped second-order-like
dynamic systems.

- The characteristics covered: settling time,
delay time and rise time.

- The work is unique for critically damped
second-order-like dynamic systems of 0/2
and 1/2 types.

- The objective was to define the specific
characteristic in the form of Kij/ωn.

- The gain Kij had a unique value for each of
the characteristic elements for type 0/2
critically damped second-order- system
independent of the natural frequency of the
dynamic system.

- The dynamics of the 1/2 critically damped
second-order system were function of the
time constant of its simple zero and its
natural frequency. Because of which the
research work found an optimal value for
the system natural frequency leading to a
minimum settling time.

- For the 1/2 critically damped second-order
system the gain Kij was function of the time
constant of the system simple zero. Curve
fitting techniques were applied to fit a
reasonable polynomial for the characteristic
gain.

- Two case studies were presented for each
type of the investigated second-order
dynamic systems. The time-based
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characteristics were compared between the
exact characteristic values and the evaluated
ones using the derived polynomial models.
The maximum difference was 0.023 % for
the first case study and 2.37 % for the
second case study.
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