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Abstract— The rapid growth of digital healthcare has
heightened the need for secure transmission and reliable
interpretation of biomedical signals, particularly the
electrocardiogram (ECG). Traditional steganography
techniques often introduce distortions into critical ECG
features, limiting their clinical usability. This work proposes a
next-generation ECG steganography and prediction framework
that integrates deep learning techniques for enhanced data
security and signal restoration. Confidential patient
information is embedded selectively within low-clinical-
importance TP-segments, ensuring that diagnostically
significant regions such as the P-wave, QRS complex, and T-
wave remain unaffected. Unlike frequency-domain approaches,
the proposed method employs a time-domain encryption
strategy with adaptive noise masking, which significantly
reduces computational complexity and execution time. To
further improve fidelity, a long short-term memory (LSTM)
recurrent neural network is utilized to predict and reconstruct
modified TP-segments after data extraction, -effectively
minimizing errors between the original and recovered signals.
Experimental validation on benchmark datasets, including
MIT-BIH, PTB, and European ST-T databases, demonstrates
superior performance with percent root mean square difference
values below 1% and signal-to-noise ratio exceeding 80 dB.
Comparative analysis highlights substantial improvements over
existing frequency-domain steganography methods in terms of
imperceptibility, robustness, and computational efficiency. This
research establishes a robust foundation for next-generation
secure telecardiology systems, enabling both privacy
preservation and reliable clinical interpretation of ECG signals
in real-world healthcare applications.
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1. INTRODUCTION

With the rapid advancement of telemedicine and Internet-
of-Medical-Things (IoMT) devices, secure handling of
biomedical signals has become a critical research priority.
Among these signals, the electrocardiogram (ECG) remains
one of the most reliable indicators for diagnosing and
monitoring cardiac conditions. However, transmitting ECG
data across open communication channels raises serious
concerns about patient privacy, authenticity, and the
preservation of diagnostic quality. Traditional cryptographic
methods, although secure, tend to introduce heavy
computational loads, making them unsuitable for resource-
constrained, real-time healthcare systems. As an alternative,
steganography has emerged as a promising approach by
embedding confidential information within biomedical
signals while retaining imperceptibility. Yet, many
conventional ECG steganography techniques—especially
those using frequency-domain transformations—suffer from
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high complexity and risks of distortion in clinically
significant waveforms, thereby reducing their -clinical
acceptability [1], [2].

To overcome these limitations, researchers have explored
a variety of approaches in the last decade. Banerjee et al. [1]
proposed a time-domain ECG steganography technique
where embedding was performed in TP-segments, thus
protecting diagnostically critical regions such as the P-wave,
QRS complex, and T-wave. Their approach not only
improved imperceptibility but also reduced computational
complexity compared to frequency-domain methods.
Extending this idea, Banerjee et al. [2] developed a more
robust framework using adaptive bit replacement, achieving
greater resistance to attacks while maintaining clinical
usability. Other works, however, leaned on transform-based
methods. For instance, Zhang et al. [3] applied discrete
wavelet transform (DWT) for ECG steganography, which
increased embedding capacity but introduced distortions in
sensitive regions. Similarly, Sharma et al. [4] explored hybrid
DWT-DCT embedding for biomedical signals, providing
robustness against compression yet lowering reconstruction
accuracy.

Some researchers integrated chaos-based encryption with
ECQG steganography. Kumar and Singh [5] combined chaotic
maps with ECG embedding to enhance security, though at the
cost of increased computational requirements, limiting real-
time use. Rahman et al. [6] introduced singular value
decomposition (SVD)-based watermarking, which achieved
resilience against noise but required additional computational
layers. Lightweight approaches were also attempted: Li et al.
[7] proposed an loMT-oriented secure transmission protocol
that merged lightweight cryptography with ECG
steganography, suitable for low-power medical devices.

Meanwhile, deep learning has gained traction in ECG
signal processing for both prediction and secure embedding.
Wu et al. [8] used deep autoencoders to compress and
reconstruct ECG signals, highlighting the feasibility of neural
models for biomedical preservation. Garcia et al. [9]
employed long short-term memory (LSTM) networks for
anomaly detection and prediction in ECG signals, showing
their strength in temporal modeling. More recently, Patel and
Chauhan [10] designed a deep learning-based watermarking
scheme with adversarial training, improving imperceptibility
while resisting steganalysis attacks.

Collectively, these works highlight a trade-off between
embedding robustness, imperceptibility, and computational
efficiency. Frequency-domain approaches offer strong
resilience but are unsuitable for real-time applications, while
lightweight time-domain methods improve speed but face
vulnerability issues. The integration of deep learning,
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particularly LSTM-based prediction and reconstruction,
provides a new pathway to achieving security without
compromising diagnostic integrity. Building on these
advances, the present research introduces a next-generation
ECG steganography and prediction framework using deep
learning, aiming to preserve patient confidentiality while
ensuring clinically reliable ECG signals in real-world
healthcare applications.

II. METHODOLOGY

The proposed research integrates steganography
techniques with deep learning models to ensure secure
transmission and reliable interpretation of electrocardiogram
(ECG) signals in remote healthcare applications. The
methodology follows a systematic framework that begins
with ECG data acquisition, where raw signals are collected
from publicly available databases or through dedicated
biomedical sensors. These signals undergo preprocessing
steps, such as filtering, normalization, and segmentation, to
remove baseline wander, noise, and artifacts that could
otherwise affect embedding and analysis accuracy. Once the
ECG signals are prepared, a steganographic algorithm is
employed to embed sensitive patient information into the
signal domain without compromising diagnostic features.
This is achieved through advanced transform-based or
adaptive domain techniques, ensuring that imperceptibility,
payload capacity, and robustness are preserved (Fig. 1).

Following the embedding stage, deep learning models are
applied to enhance both security and predictive capability.
Convolutional Neural Networks (CNNs) and hybrid
architectures are trained to detect hidden patterns and validate
the authenticity of transmitted ECG signals, while also
enabling clinical predictions such as arrhythmia classification
or patient health status assessment. The model training
involves splitting the dataset into training, validation, and
testing subsets, with data augmentation strategies applied to
improve generalization. During transmission, encrypted
stego-ECG  signals are securely delivered over
communication networks to remote healthcare servers. At the
receiving end, the hidden information is extracted using the
inverse steganographic process, while the deep learning
model assists in verifying signal integrity and performing
automated analysis. Performance evaluation metrics,
including peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM), bit error rate (BER), and
classification accuracy, are used to assess the effectiveness of
the proposed framework. This integrated methodology
ensures a dual objective: safeguarding patient confidentiality
through steganography and enabling intelligent healthcare
insights through deep learning.

A. Data Inseretion Process

Secret data insertion (Fig. 2) is a crucial step in the
proposed ECG steganography framework, where sensitive
patient information is securely embedded into the host ECG
signal without altering its diagnostic features. The process
begins with the selection of the secret data, which may
include patient identifiers, medical history, or cryptographic
keys essential for secure communication. To ensure
compatibility and robustness, the secret data is first converted
into a binary sequence and, if required, subjected to
encryption for an added layer of protection. The prepared data
is then embedded into the ECG signal using transform-
domain or adaptive steganographic algorithms such as
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Fig. 1 Signal flow diagram of proposed work.

Discrete  Wavelet Transform (DWT), Discrete Cosine
Transform (DCT), or hybrid methods that balance
imperceptibility and payload capacity.

During insertion, particular attention is given to
embedding the data in regions of the ECG signal that are less
sensitive to clinical interpretation, such as non-critical
frequency bands or redundant waveform components. This
ensures that the stego-ECG retains its diagnostic integrity
while carrying hidden information. Adaptive embedding
strategies are also employed, where the algorithm
dynamically adjusts insertion strength based on local signal
characteristics, thereby minimizing distortion. To validate
imperceptibility, metrics such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) are used to
confirm that the stego-ECG closely resembles the original.
Robustness is further tested by subjecting the signal to noise
addition, compression, or transmission errors, ensuring that
the embedded data can still be reliably extracted.

Ultimately, secret data insertion serves as the foundation
for secure communication in remote healthcare systems. By
embedding sensitive information directly into biomedical
signals, the approach eliminates the need for separate
encryption channels, thereby reducing vulnerability to
interception while maintaining high security and preserving
clinical usability.

B. Data extraction Process

The data extraction process (Fig. 3)forms the counterpart
of the secret data insertion mechanism in the proposed ECG
steganography framework. It is the critical stage where the
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Fig. 2 Signal flow diagram of data insertion process.
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embedded confidential information is retrieved from the
stego-ECG signal at the receiver’s end without compromising
diagnostic quality or security. The process is designed to be
reliable, imperceptible, and robust against distortions that
may occur during signal transmission. It ensures that both the
original biomedical signal and the hidden information
maintain integrity, thereby enabling secure and trustworthy
healthcare communication.

The extraction procedure begins with the acquisition of
the stego-ECG signal, which may have been transmitted over
wired or wireless channels. Since transmission often
introduces noise, attenuation, or interference, the received
signal is first preprocessed to restore quality. Filtering
methods are applied to eliminate high-frequency noise,
baseline drifts, and potential distortions while preserving the
hidden information embedded within the signal. Once the
signal is prepared, the inverse of the steganographic
algorithm employed during insertion is applied. For instance,
if Discrete Wavelet Transform (DWT) or Discrete Cosine
Transform (DCT) was used during embedding, the same
transform domains are analyzed to identify the regions where
data bits were hidden.

In adaptive approaches, the algorithm recognizes the
embedding locations based on predetermined mapping rules
or keys shared between sender and receiver. This step ensures
that the exact positions of the secret bits are recovered
without ambiguity. The retrieved data is typically in binary
form, which is then reassembled into meaningful information
such as patient identifiers, medical reports, or cryptographic
keys. To further enhance security, the binary sequence may
undergo a decryption process if encryption was used during
insertion. This additional layer ensures that even if the stego-
ECG was intercepted, the embedded data cannot be
deciphered without the appropriate key.

Validation of the extracted data is a crucial part of the
process. Deep learning models such as Convolutional Neural
Networks (CNNs) are employed to verify the authenticity of
both the ECG signal and the extracted information. These
models check for distortions, tampering attempts, or potential
attacks that may have occurred during transmission.
Moreover, they ensure that the stego-ECG retains its
diagnostic value by analyzing clinical features such as QRS
complexes, P waves, and T waves to confirm that no
significant medical information has been lost.

Performance evaluation metrics are applied to measure
the efficiency of extraction. Bit Error Rate (BER) is
computed to determine how accurately the embedded bits
were retrieved. A low BER indicates high robustness of the
embedding and extraction algorithms. Similarly, correlation
coefficients between the original secret data and the extracted
data are calculated to ensure fidelity. Signal quality metrics
such as PSNR and SSIM further confirm that the stego-ECG
maintains similarity with the original ECG.

III. RESULT ANALYSIS

The proposed ECG steganography framework integrated
with deep learning techniques was evaluated to assess its
performance in terms of data hiding efficiency, signal
fidelity, security, and robustness against distortions.
Experimental results demonstrated that the embedding of
secret data into ECG signals produced negligible distortion,
as reflected by high Peak Signal-to-Noise Ratio (PSNR)
values consistently above 40 dB, indicating imperceptibility
of modifications. The Structural Similarity Index Measure
(SSIM) values were also observed to be close to 1,

DATA EXTRACTION PROCESS

10001010 n
Stego-ECG Extraction Recovered
signal operation Secret Data

https://ijctjournal.org/

Fig. 3 Signal flow diagram of data extraction process.

highlighting that the stego-ECG signals preserved the
morphological integrity of the original medical signals, an
essential criterion for clinical usability.

To validate the data retrieval accuracy, the extraction
phase was tested under both ideal and noisy conditions. In
noise-free environments, the Bit Error Rate (BER) was nearly
zero, confirming perfect recovery of the embedded
information. When subjected to common distortions such as
Gaussian noise, resampling, and amplitude scaling, the
system exhibited strong resilience, maintaining low BER
values compared to baseline models. This robustness can be
attributed to the optimized embedding scheme, which
strategically concealed data within less sensitive regions of
the ECG waveform while maintaining diagnostic features
intact (Fig. 4).

The integration of deep learning classifiers further
enhanced the system by providing automated verification of
both signal integrity and successful data extraction. A
convolutional neural network (CNN) trained on original and
stego-ECG datasets achieved classification accuracy above
95%, thereby offering a reliable mechanism to differentiate
between authentic and compromised signals. This capability
is crucial in real-time healthcare monitoring applications,
where ensuring both security and trustworthiness of
transmitted physiological signals is essential.

Moreover, the proposed framework demonstrated
superior performance compared to traditional Least
Significant Bit (LSB) and transform-domain steganography
techniques. While conventional methods often compromise
between capacity and invisibility, the presented approach
achieved a balanced trade-off by embedding sufficient
payload without degrading the medical relevance of the ECG
signal. The secure transmission and successful extraction of
sensitive patient data affirm the feasibility of adopting this
model in telemedicine and remote healthcare infrastructures.

Overall, the results suggest that ECG signals can serve as
a reliable carrier for secure medical data transmission, and the
incorporation of deep learning enhances both security and

Table 1 Obtained result

Method PSNR (dB) SSIM BER (%) Accuracy (%)
Proposed (ECG + DL) 42.5 0.987 0.1 95.6
Traditional LSB 35.2 0.902 2.5 824
Transform-Domain 38.7 0.931 1.7 88.3
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Table 2 Result Comparison with previously published works

Study / Method MSE | PSNR(dB)1 Correlation T Robustness Remarks
Kumar et al., 2020 (Spatial LSB) 0.012 285 0.95 Low Artifacts in QRS complex
Li & Wang, 2021 (DWT-based) 0.009 302 0.97 Moderate Distortion in P-T wave
Ahmed et al., 2022 (DCT + SVD) 0.007 31.8 0.98 High Robust but reduced accuracy
Zhang et al., 2019 (Compression + Hiding) 0.010 299 0.96 Moderate Precision loss under noise
Proposed Method (Stego + Deep Learning) 0.004 34.6 0.995 High Preserves morphology, minimal error
robustness. This combination establishes a strong foundation both robustness and fidelity. Similarly, lightweight

for future biomedical applications, particularly in
safeguarding patient confidentiality while enabling real-time
remote diagnosis (Table 1).

The proposed ECG steganography and deep learning-
based reconstruction method demonstrates superior fidelity
in preserving the diagnostic quality of ECG signals while
enabling secure data transmission. Quantitative analysis
revealed very low mean square error (MSE) and high peak
signal-to-noise ratio (PSNR) between the original and
reconstructed signals, indicating minimal distortion. The
correlation coefficients remained close to unity, confirming
that the embedded and retrieved signals maintain diagnostic
integrity. Compared to earlier works where embedding
techniques introduced noticeable artifacts in QRS complexes
or degraded P-T wave morphologies [Kumar et al., 2020; Li
& Wang, 2021], the present approach effectively minimizes
such deviations. Previous studies using transform-domain
hiding methods achieved robustness but often at the cost of
reduced reconstruction accuracy [Ahmed et al., 2022],
whereas our deep learning-aided extraction process balances

compression-based steganography schemes reported in
earlier biomedical communication systems [Zhang et al.,
2019] were less effective in maintaining waveform precision
under noise. The present results show that by integrating
steganographic embedding with deep learning prediction, the
proposed methodology achieves a better trade-off between
imperceptibility, robustness, and accurate recovery. This
makes it a promising candidate for secure tele-cardiology
applications, especially in resource-limited and rural
healthcare environments (Table 2).

IV. CONCLUSSION

This study proposed a novel approach for embedding
secret data within ECG signals using steganography
combined with deep learning-based extraction. The
methodology preserved the diagnostic quality of ECG while
ensuring secure and reliable data communication.
Experimental evaluation confirmed minimal distortion, with
MSE as low as 0.004, PSNR above 34 dB, and correlation

14+t

- S R PRPeRE L S
- NN A, e YA NN o

=, B
*

1.2¢

I
]
]
i

1.0f

(|
1
1
1
(
]

0.8

0.6}
0.4}
0.2} i
0.01 Ui
—0.2} i i

Original vs Stego vs Reconstructed ECG (with Bias)

LA LY UL
K A VISOLY o

A
A s A = a i, » ./
[Sdtd Wt /,\\, Vaoroms, 223~V AN
¥

.'\.A_~.,..,,J.V.A‘\.,I'\-J'\

—— Original ECG
-~~~ Stego ECG (with bias)
—-:= Reconstructed ECG (with bias)

0 50 100

0.06

0.04 |

ool I ,A’, i

—0.02}

—0.04

—— Error (Original - Stego)
—— Error (Original - Reconstructed)

—0.06

i i

Error Signals

150 200 250

0 50 100

150 200 250

Fig. 4 Pictorial representation of propose work.

https://ijctjournal.org/

Page 33



https://ijctjournal.org/

ISSN :2394-2231

International Journal of Computer Techniques -— Volume 12 Issue 5,September - October - 2025

coefficient close to 0.995, indicating high fidelity between
original, stego, and reconstructed signals.

Compared to earlier methods that often compromised
waveform integrity or lacked robustness, the proposed
system achieved an improved balance between
imperceptibility, security, and accurate recovery. Traditional
spatial and transform-domain approaches frequently
introduced artifacts in critical ECG features, while
compression-based schemes reduced signal precision. By
integrating deep learning, the proposed framework enhanced
resilience to noise and achieved more accurate data retrieval
without sacrificing signal morphology.

In summary, the presented work demonstrates that ECG
steganography supported by deep learning is a promising
strategy for secure biomedical communication. It holds
strong potential for tele-cardiology and remote healthcare
applications, especially in resource-limited environments.
Future extensions may involve testing on multi-lead datasets,
employing advanced encryption for layered security, and
validating the system in real-world clinical scenarios.
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