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Abstract:
Air safety continues to be a critical concern, frequently affected by human mistakes like pilot workload, fatigue, stress, and emotional
fluctuations. Addressing these challenges, recent advancements have emphasized the integration of machine learning with
psychophysiological data to better understand and monitor pilot behavior. This project presents a systematic review of current research in this
domain, following a rigorous methodology to analyze 80 peer-reviewed studies selected from a total of 3,352 articles across five prominent
electronic databases. The review focuses on key dimensions such as behavioral indicators, data types, preprocessing methods, machine
learning models, and evaluation metrics. Findings suggest a predominant focus on cognitive factors like workload and fatigue, while
emotional responses and attentional dynamics remain underexplored. Conventional preprocessing techniques and classical machine learning
algorithms—particularly decision trees and support vector machines—are widely adopted, whereas the application of deep learning
approaches remains limited. Critical research gaps have been identified, including a lack of emphasis on the impact of preprocessing strategies,
challenges related to data imbalance, insufficient diversity in data collection environments, and minimal attention to model interpretability.
This study highlights the need for future research to explore advanced preprocessing techniques, incorporate explainable AI, and capture a
broader spectrum of behavioral data. Such directions are essential for building more robust, accurate, and human-centric safety systems in
aviation.
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I. INTRODUCTION
The aviation industry is rapidly evolving, demanding that

pilots act not only as system operators but also as real-time
decision-makers in high-risk and dynamic environments. This
shift underscores the importance of understanding human
behavior under stress, cognitive load, and fatigue to ensure
aviation safety. Recent research highlights the integration of
machine learning (ML) with psychophysiological measures
such as electroencephalogram (EEG), electrocardiogram
(ECG), and galvanic skin response (GSR) as a promising
approach to monitoring and evaluating pilot states. These
indicators provide valuable insights into cognitive
performance, attention, and emotional regulation, all of which
directly affect flight safety. This paper presents a systematic
literature review examining how ML techniques are applied in
conjunction with psychophysiological data to analyze and
predict pilot behavior. The review categorizes behavioral
aspects studied, explores data collection and preprocessing
strategies, evaluates applied ML models, and summarizes
performance outcomes. The results reveal emerging trends
alongside critical gaps, including limited focus on emotional
and attentional factors, underutilization of deep learning

methods, and insufficient emphasis on interpretability.
Addressing these gaps is vital to advancing human-centered
aviation safety systems capable of real-time behavioral
monitoring and predictive intervention.

I. LITERATURE SURVEY
TABLE I

Author(s) Focus Area Methods/Data
Used

Key Findings

C. V. Oster,
J. S. Strong,
C. K. Zorn

Human
factors in
aviation
safety

Analysis of
fatigue,
workload,
decision-
making

Highlighted
the role of
psychophysiol
ogical
monitoring in
safety
frameworks

Y. Liu, Y.
Gao, L.
Yue, H.
Zhang, J.
Sun, X. Wu

Real-time
pilot
workload
detection

Non-intrusive
sensors, HRV,
EEG, biometric
signals, ML
classifiers

High accuracy
in workload
classification;
potential for
adaptive
cockpits

A.
Hernández-
Sabaté, J.
Yauri, P.

EEG-based
cognitive
load
assessment

EEG
preprocessing
+ ML
classifiers

Consistent
differentiation
of cognitive
load levels
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Folch, M.
À. Piera, D.
Gil
M. Cabrall,
D. Almeida,
J. B. L.
Filho

Review of
mental
workload
assessment

Subjective,
behavioral, and
physiological
measures
(EEG, ECG,
eye-tracking)

Multimodal
approaches
recommended;
ML crucial for
interpretation

J. Ewing, R.
Ahlstrom, S.
O’Donnell

Physiological
indicators for
workload

HR, GSR,
EEG in
simulated
flight tasks

Identified
reliable
physiological
measures for
workload
classification

III. METHODOLOGY

A. Proposed Work:

The proposed solution integrates machine learning
algorithms with psychophysiological data monitoring to
establish a proactive aviation safety framework. The system is
designed to continuously monitor both environmental
conditions and human performance metrics in real time,
thereby facilitating the early detection of potential safety
threats. Large volumes of physiological sensor data, including
electroencephalogram (EEG), electrocardiogram (ECG), heart
rate variability (HRV), and electrodermal activity (EDA), are
processed to identify patterns associated with reduced
alertness, elevated stress, or fatigue. The architecture
incorporates a continuous feedback loop, wherein anomalies
detected by the machine learning models automatically
generate alerts or initiate adaptive system responses. These
preventive measures assist pilots and air traffic controllers in
mitigating risks before the occurrence of safety-critical
incidents. Furthermore, the predictive accuracy of the system
is progressively enhanced through incremental learning from
both historical records and real-time operational data, ensuring
robustness and adaptability under dynamic aviation
environments.

B. System Architecture

Fig. 1 Proposed Architecture
This architecture consists of two main components: the

Admin interface and the User interface.
Admin Interface:

1) Dataset Selection/Creation: The aviation safety dataset
is prepared by integrating physiological sensor data (EEG, ECG,
HRV, EDA) with environmental parameters such as cabin
pressure, temperature, and workload indicators. Features
represent pilot psychophysiological states, while labels indicate
safety status (e.g., normal, stressed, fatigued).
2) Data Preprocessing: Collected data undergoes filtering,

normalization, and feature extraction to remove noise and
standardize values. The preprocessed feature vectors are stored
as X-train variables, and labels are stored as Y-train variables
for further model development.
3) Model Training and Validation: The preprocessed

dataset is divided into training and testing sets. Training data
is used to train machine learning algorithms such as SVM,
AdaBoost, MLP Classifier, and Random Forest, while testing
data is used to evaluate accuracy, precision, recall, and F1-
score.
User Interface:
1) Model Deployment: Safety Prediction Model: Machine

learning models trained on physiological and environmental
datasets are deployed to predict pilot states (alert, fatigued,
stressed) and potential safety risks.
Anomaly Detection Model: Detects irregular patterns in real-
time data and categorizes them into severity levels (low,
medium, high risk).
Alert Generation System: Generates proactive warnings for
both pilots and air traffic controllers when unsafe conditions
are detected.
2) Web Application Development: User Interface: A web-

based dashboard is developed using Flask/Django to allow
remote users (pilots, air traffic controllers, administrators) to
input or stream real-time physiological/environmental data
and visualize prediction outcomes.
Backend Integration: The web application communicates
with machine learning models and a MySQL database. Real-
time input data is passed to the predictive models, and results
are retrieved for analysis.
Results Display: Predictions (stress/fatigue levels, safety
alerts, anomaly classifications) are displayed in a user-friendly
dashboard, with color-coded alerts and historical trend
analysis.
3) Frontend Development: The front-end of the application

is built using HTML, CSS, and Flask with Python libraries to
ensure a user-friendly interface. Users can register, log in,
upload real-time physiological values, and view aviation
safety predictions. All user data is stored securely in MySQL,
and ML models are integrated for real-time predictions.
4) Testing and Validation: The performance of the models

is evaluated using accuracy, precision, recall, and F1-score.
The system is tested with both real-world aviation data and
synthetic test cases to ensure smooth end-to-end functionality,
robustness, and reliability in operational scenarios.
5) Algorithms Employed: Support Vector Machine

(SVM): Constructs optimal hyperplanes to maximize
separation between psychophysiological states, enabling
robust classification.
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AdaBoost: An ensemble learning method that combines
multiple weak classifiers to enhance prediction accuracy and
reduce bias.
Multilayer Perceptron (MLP) Classifier: A neural network-
based classifier capable of modeling complex, non-linear
relationships in psychophysiological data.
Random Forest: An ensemble of decision trees that enhances
classification stability, minimizes overfitting, and provides
reliable prediction results.

IV. EXPERIMENTAL RESULTS
Open Anaconda Prompt
Switch to TensorFlow environment to run the file change to
the directory where the file is located then run the file and
open the URL http://127.0.0.1:8000/ by clicking ctrl+click.

Fig. 2 Anaconda Prompt

Fig. 3 Home Page

This is the Home Page, it has three options Home, User and
Admin.

Fig. 4 User Login Page

This is User Login Page

Fig. 5 Prediction Page

Once user logs in user can view their profile, predict and
logout. User can predict the data, and find out the pilot’s
mental state using the psychophysiology data

Fig. 6 Admin Login

Fig. 7 View User Profile

Once admin logs in he can manage the users

Fig. 8 Model Accuracy
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Fig. 9 Model Accuracy in Bar Graph

Amin can view model accuracy

Fig. 10 Prediction Ratio

Fig. 11 Prediction Ratio in Line Chart

Admin can view prediction safety in both ratio form and chart
form

V. CONCLUSIONS
This systematic literature review offers a detailed and

comprehensive overview of current research applying
Machine Learning (ML) models to the interpretation of
psychophysiological data, with a specific focus on pilot
behavior. The findings highlight significant variability in the
types of psychophysiological data utilized across studies, with
EEG emerging as the most commonly used modality. This
preference for EEG reflects its established reliability in
capturing cognitive states; however, it also underscores the
limited use of other potentially valuable modalities such as
ECG, GSR, and eye-tracking metrics. The review also reveals
a notable research gap in the behavioral dimensions
examined—particularly the underrepresentation of emotional
responses and attention dynamics compared to the more
frequently studied workload and fatigue. These overlooked
aspects are critical not only for a more holistic understanding
of pilot performance but also for enhancing aviation safety.
Current methodological approaches often aggregate
behavioral factors into broad categories, which may obscure
the nuanced relationships between cognitive, emotional, and

attentional states. From this analysis, it is evident that future
research should adopt a more balanced and integrative
approach—leveraging multi-modal data sources, applying
advanced ML techniques, and focusing on underexplored
behavioral variables. Such efforts could yield more accurate,
interpretable, and operationally relevant models for pilot state
assessment.

VI. FUTURE SCOPE
There remains considerable scope for expanding the current
body of research in multiple directions. One promising avenue
is multi-modal data integration, where combining EEG with
eye tracking, galvanic skin response (GSR), and
electrocardiography (ECG) could yield richer and more
comprehensive representations of pilot states, thereby
providing deeper behavioral insights. Similarly, the adoption
of refined behavioral categorization—moving beyond broad
classifications toward more granular definitions of emotional
states, attentional shifts, and stress responses—can
significantly enhance the precision of predictive models.
Furthermore, the application of advanced machine learning
and deep learning approaches, including hybrid techniques,
ensemble learning, and explainable AI frameworks, offers the
potential to improve both prediction accuracy and
interpretability of results. In addition, the development of real-
time monitoring systems powered by machine learning could
enable continuous assessment of pilot states, offering
immediate feedback within operational environments and
thereby contributing directly to safety interventions. Finally,
advancing this research will benefit greatly from cross-
disciplinary collaboration, involving experts from
neuroscience, psychology, aviation safety, and computer
science, which can facilitate more holistic and robust solutions
for aviation safety and human performance optimization.
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