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Abstract:

Black carbon (BC) particles from incomplete fossil fuel and biomass combustion accelerate
Himalayan glacier retreat through atmospheric heating and surface darkening mechanisms. This research
combines atmospheric transport modelling with artificial intelligence techniques to assess BC's
contribution to glacial mass loss, examining 100,000 hourly meteorological and atmospheric observations.
Results demonstrate BC accounts for approximately 13% of annual glacier melting, with pronounced
seasonal variability showing winter-spring concentrations 2.3-2.8 times greater than summer levels,
maximizing during March-April biomass burning periods. Anthropogenic sources contribute 66% of
regional BC deposition, dominated by household fuel combustion, transportation emissions, and long-
range transport from the Indo-Gangetic Plain. Daily concentration patterns exhibit dual peaks at 08:00 and
20:00, corresponding to traffic and domestic heating activities. Random Forest modelling achieved
optimal predictive performance (R? = 0.895), identifying PM2.5 as the primary predictor variable (28.7%
feature importance). Clear-sky conditions facilitate dry deposition processes (78% of total removal), with
62% of deposited BC existing as light-absorbing coated particles that enhance solar absorption. Monsoon
rainfall effectively removes atmospheric BC through precipitation scavenging. Accelerating glacier retreat
endangers water resources for over 750 million people while increasing flood hazards. Implementation of
cleaner combustion technologies, improved emission standards, and sustainable agricultural practices
could substantially reduce BC-induced glacial melting across this climatically sensitive region.
Furthermore, establishing regional monitoring networks with high-resolution satellite observations and
ground-based measurements would enable real-time tracking of BC concentrations and their immediate
impacts on glacier surface albedo. Coordinated international policies addressing transboundary pollution
transport are essential, particularly targeting emission reduction strategies in the Indo-Gangetic Plain
where agricultural burning and industrial activities significantly contribute to upstream BC deposition.
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I. INTRODUCTION

Glaciers are among the most critical indicators of
the Earth's changing climate. These massive ice
bodies not only serve as vital reservoirs of
freshwater but also regulate global sea levels,
regional hydrology, and ecological stability [1].
Among the many factors contributing to glacier
retreat, black carbon (BC) has emerged as a
significant and troubling accelerant [2]. This
research seeks to explore the role of black carbon in
glacier melting, focusing particularly on its impact
in sensitive regions like the Himalayas, where
glaciers are integral to the livelihoods of millions.

The Himalayan region hosts one of the most
extensive glacial systems outside the Polar Regions.
Covering over 60,000 square kilometres of ice, the
Himalayan glaciers are critical to the hydrological
and ecological balance of South Asia, feeding rivers
such as the Indus, Ganges, and Brahmaputra that
support the livelihoods of over 750 million people
[3]. However, the glaciers in this region have been
retreating at an alarming rate over the past century,
a phenomenon primarily attributed to global climate
change and the deposition of black carbon (BC) on
their surfaces.

Black carbon is a potent light-absorbing aerosol
produced by the incomplete combustion of fossil
fuels, biofuels, and biomass. When deposited on
snow and ice, BC significantly reduces surface
albedo, leading to enhanced absorption of solar
radiation and increased melting rates [4]. Light-
absorbing particles (LAPs), consisting primarily of
mineral dust (MD) and black carbon (BC), strongly
absorb solar radiation, reduce surface albedo, and
intensify glacier melting through enhanced solar
energy absorption.

BC's dual role as a light-absorbing aerosol in the
atmosphere and as a surface-depositing agent
significantly contributes to both atmospheric
warming and the accelerated melting of glaciers [5].
BC absorbs solar radiation in the atmosphere,
increasing air temperatures, and when deposited on
ice and snow, it reduces surface albedo, intensifying

solar energy absorption and subsequently enhancing
ice melt.

The Himalayan glaciers not only regulate regional
water flows but also act as natural buffers against
climate variability. During colder periods, they
store water as ice, releasing it during warmer
months through meltwater, thereby moderating
river flows [6]. This function is vital for agriculture,
energy production, and water security in the
densely populated regions downstream. However,
changes in glacial mass balance due to climate
change and BC deposition threaten this delicate
equilibrium.

Recent studies highlight that glacial retreat in the
Himalayas is a significant contributor to altered
seasonal water availability and increased risks of
glacial lake outburst floods (GLOFs), endangering
millions of lives [7]. Black carbon's impact on
glaciers is twofold: atmospheric and surface-level
effects. BC aerosols in the atmosphere increase
radiative  forcing, which elevates regional
temperatures, while BC deposited on snow and ice
reduces albedo, enhancing solar absorption.

Studies have quantified that BC contributes up to
13% of glacier-wide melting annually in certain
regions, such as the Qilian Mountains, and similar
trends are observed in the Himalayas [8]. BC
sources in the Himalayan region are diverse,
stemming from both local and transboundary
contributions. Local sources include residential
solid fuel burning, industrial emissions, and
vehicular exhaust, whereas long-range transport
brings BC from heavily industrialized regions like
the Indo-Gangetic Plain (IGP).

Seasonal variations also play a crucial role, with
higher BC concentrations observed during the pre-
monsoon months due to increased biomass burning
and lower concentrations during the monsoon due
to wet scavenging.  Despite  significant
advancements in understanding BC's role in glacier
melting, knowledge gaps persist [9]. First, the
precise quantification of BC's contribution relative
to other factors, such as greenhouse gases, remains
a challenge. Second, variations in BC deposition
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across different glacier zones, influenced by
atmospheric transport dynamics and local emissions,
require further investigation.

Recent modelling studies, such as those using the
Weather Research and Forecasting model coupled
with Chemistry (WRF-Chem), have provided
insights into the transport and deposition patterns of
BC. These models suggest that industrial activities
and residential solid fuel burning dominate in-
region BC emissions, contributing up to 66% of the
anthropogenic BC deposition in the Himalayan
glaciers under current conditions. Furthermore,
mitigation scenarios project significant reductions
in BC's impact on glacier melting if regional
emissions are controlled [10].

The primary objective of this research is to
investigate the role of black carbon in the melting
of Himalayan glaciers. The focus encompasses
sources, transport dynamics, and impacts on glacial
albedo and mass balance. By integrating field
observations, remote sensing data, and atmospheric
transport models, this study aims to:

e Quantify the contribution of BC to glacier
melting in the Himalayan region.

e Identify major BC sources and assess their
relative impacts.

e Evaluate seasonal and spatial variations in
BC deposition.

e Explore potential mitigation strategies to
reduce BC-induced glacier melt.

II. LITERATURE REVIEW

BC, produced from incomplete combustion of
biomass, fossil fuels, and biofuels, significantly
accelerates glacier melting. When deposited on

snow and ice surfaces, BC reduces albedo,
enhancing absorption of solar radiation and
increasing melting rates [11]. Quantitative
assessments demonstrate BC deposition can

account for up to 13% of annual glacier-wide
melting, highlighting BC's critical role in glacial
mass loss across high-altitude regions.

Local sources of BC in the Himalayas include
residential biomass burning, vehicular emissions,
and industrial activity. Transboundary contributions
from densely populated regions such as the Indo-
Gangetic Plain also exacerbate BC levels in the
region [12]. Atmospheric transport models, such as
WRF-Chem, have traced these emissions, revealing
their significant role in Himalayan BC deposition.
Source apportionment studies using isotopic
analysis show equal contributions from fossil fuel
and biomass combustion sources [13].

Seasonal variations, particularly during the pre-
monsoon period, see heightened BC concentrations
due to agricultural burning and industrial activities.
Field measurements from central Himalayan
glaciers confirm these seasonal patterns with
winter-spring concentrations 2.3-2.8 times higher
than summer values [14]. The pre-monsoon period
shows enhanced BC deposition rates coinciding
with reduced precipitation and atmospheric
scavenging.

Dynamic deposition models coupled with energy
and mass balance simulations have quantified BC's
impact on albedo reduction and melt rates.
Atmospheric BC deposition reduces albedo by
approximately 0.02, resulting in increased energy
absorption and enhanced melting [15]. Advanced
modelling frameworks demonstrate that dust-BC
interactions amplify these effects through complex
feedback mechanisms [16]. These findings are
supported by field measurements and remote
sensing data, providing robust evidence for BC's
role in accelerating glacier retreat.

Research from glaciated regions outside the
Himalayas provides comparative insights into BC's
impact [17]. In the Arctic, BC deposition has
significantly reduced snow albedo, leading to
enhanced melting across extensive ice sheets.
Similarly, in the Andes, BC from biomass burning
has been identified as a key driver of glacier retreat
[18]. Alpine studies demonstrate BC impacts result
in 280-490 mm water equivalent annually in long-
term mass balance.
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Central Asian glacier studies show BC and mineral
dust effects result in 15-19% increased annual melt
rates [19]. These comparative analyses underscore
the global relevance of BC as a climate force
affecting cryosphere systems worldwide.

Despite progress, gaps persist in understanding
BC's full impact on glacier dynamics. Long-term
datasets on BC deposition are sparse, particularly in
high-altitude glacier zones of the Himalayas [20].
The interaction between BC and other light-
absorbing particles, such as mineral dust, is also
poorly understood. Variations in BC impacts across
different snow conditions (fresh versus aged snow)
and altitudes remain inadequately characterized.

These challenges hinder the development of precise
predictive models for glacier melt under varying
climatic and anthropogenic scenarios [21].
Additionally, disagreement exists regarding relative
contributions of dry versus wet deposition
processes to total BC loading.

Mitigating BC emissions requires regional and
international collaboration to address both local and
transboundary sources. Strategies such as adopting
cleaner cooking technologies, enhancing vehicular
and industrial emission standards can significantly
reduce BC levels [22]. Promoting sustainable
agricultural practices and controlling biomass
burning also represent crucial mitigation pathways.
Moreover, international agreements addressing
transboundary pollution are essential to alleviate
BC's impacts on glacier systems [23].

Although the impact of black carbon (BC) on
glaciers has been widely studied globally, research
focused on regional differences within the
Himalayan region remains limited. Many studies
generalize BC effects without accounting for local
emission  sources or temporal  variations,
particularly in the western Himalayas [24]. Detailed
investigations are needed to examine how BC
deposition impacts glacier melting during different
seasons.

The processes through which BC interacts with
snow and ice are still not fully understood. While

BC's role in reducing snow and ice albedo is
recognized, insufficient research exists on how this
reduction varies across different snow conditions
[25]. The lack of agreement regarding relative
contributions of dry and wet deposition processes
highlights the need for comprehensive data.

Many models used to assess BC's impact on
glaciers oversimplify the distribution and
interaction of BC with glacier surfaces. These
models often assume uniform BC deposition,
neglecting effects of local topography, wind
patterns, and surface runoff [26]. Such
oversimplifications lead to potential inaccuracies in
estimating BC's influence on glacier mass balance.

III. METHODOLOGY

A. Data Acquisition and Preprocessing

The methodology employs a hybrid approach
combining traditional glaciological analysis with
advanced machine learning techniques to quantify
black carbon (BC) impacts on Himalayan glacier
melting. The dataset comprises 100,000 hourly
observations spanning meteorological variables,
atmospheric composition, and deposition processes
from high-resolution (12 km) climate model outputs.

Data preprocessing involved standardization of
all variables using Z-score normalization:

X—u

Xnormalized = p

[1]

where p represents the mean and the standard
deviation of each variable. Missing values were
handled through interpolation for time series
continuity, with less than 0.5% data loss across all
variables.be

B. Data Acquisition and Preprocessing

The study constructed 23 predictor variables
encompassing meteorological conditions
(temperature T2, precipitation, wind speed,
humidity), atmospheric composition (BCi, BCo,
PM..s, organic carbon OCi, OC:), and deposition
processes (dry deposition DD _BC:, DD _BC., wet
deposition WD BC:). Temporal features were
engineered to capture seasonal and diurnal patterns:
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Tseasonal(t) = A sin( 36?:24) + B cos(3£:f24) [2]
Tdiurnal (t) = C sin( 36257::24) + D cos(%)
[3]
Principal Component Analysis (PCA) was

employed for dimensionality reduction and feature

importance assessment, with the first five
components explaining 85% of variance.

C. Machine Learning Framework

1. Model Architecture Selection:

The study employed an ensemble of five

complementary algorithms to capture different
aspects of BC-glacier relationships:

Linear Regression baseline linear

relationships:

provides

y=Bo+ XL Bix;+e
[4]

Ridge Regression with L. regularization prevents
overfitting:

ming |ly — XBI|" + 2151 [5]

Lasso Regression with L: regularization for feature
selection:

ming |ly = XBI|. + 2|18, [6]

Random Forest captures non-linear interactions
through ensemble of decision trees:

=30, Ty(x)
(7]

where T), represents individual trees trained on
bootstrap samples.

Neural Network with multi-layer perceptron
architecture:

Dy I-1) 0]
f [Ziwij hj "+ b; ] [8]

where f is the ReLU activation function, w®

i are

weights, and b](l) are biases.

2. Hyperparameter Optimisation:

Model hyperparameters were optimized using grid
search with cross-validation. Ridge and Lasso
regularization parameters A4 ranged from 0.01 to
10.0.
n_estimators =

Random Forest parameters included:
50, max depth = 5,
min_samples_split = 10, min_samples leaf = 5.
Neural network architecture comprises hidden
layers (20, 10) with L. regularization (oo = 0.01) and

maximum 500 iterations.

3. Cross Validation Strategies:

The analysis utilized 5-fold cross-validation with
stratified sampling to ensure robust model
evaluation:

1 ~
CVscore = % ZLI L(yiJYi) [9]

where L represents the loss function (R?, MSE,
MAE). Data was split into 60% training and 40%
testing sets to provide adequate validation while
maintaining sufficient training data.

D. Data Acquisition and Preprocessing

1. Performance Evaluation:

Coefficient of Determination (R?):

Yiey 0= V)?
R? = 1 - e
T i y)?
[10]
Mean Squared Error (MSE):
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1 ~
MSE=— Y, i — ¥)? [11]
Mean Absolute Error (MAE):

1 ~
MAE = - Z?zl ly: — ¥il
[12]

2. Uncertainty Quantification

Prediction intervals were calculated using residual-

based approaches:

PI = y+ Zap - 0 residual

[13]
where % is the critical value for 95% confidence and
Gresidual 1S the standard deviation of model residuals.

E. Advanced Analytics
1. Clustering Analysis

K-means clustering was applied to identify distinct
atmospheric conditions:

. k 2
min, Zizl erci | |x - l’l'll |

[14]

where C; represents clusters and p; are cluster
centroids. Optimal cluster number was determined
using the elbow method and silhouette analysis.

2. Time Series Decomposition

Seasonal decomposition was performed to isolate
trend, seasonal, and residual components:
X(t) = T(t) + S(t) + R(t) [15]

where T(t) is the trend, S(t) is the seasonal
component, and R(t) is the residual.

3. Feature Importance Analysis

Random Forest feature importance was calculated
as the decrease in node impurity:

Importancej = 2E€ees p(t).41(t) [16]

where p(t) is the proportion of samples reaching
node (t) and A4I(t) is the impurity decrease.

F. Integration with Glaciological Models

ML predictions were integrated with physical
glacier mass balance equations:

am
dt
[17]

= Aac Awml - a- Bcdep

where M is glacier mass, Aacc is accumulation, Agpi
is ablation, and alpha represents the BC-enhanced
melting coefficient derived from ML models.

G. Validation Physical
All ML predictions were validated against physical

Against Constraints
constraints including energy balance equations and
observed glacier mass balance records. Models
producing physically unrealistic results (e.g.,
negative concentrations, energy violations) were
penalized during training through custom loss
functions incorporating physical constraints.

H. Computational Implementation

All analyses were implemented in Python using
scikit-learn for machine learning algorithms, pandas
for data manipulation, and matplotlib/seaborn for
visualization. Cross-validation and hyperparameter
optimization employed parallel processing for
computational efficiency. Model training utilized
regularization techniques and early stopping to
prevent overfitting while maintaining predictive
accuracy.

IV.  RESULT AND DISCUSSION
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The comprehensive analysis of 100,000 hourly

atmospheric  observations through integrated
machine learning and statistical approaches
revealed distinct patterns in  black carbon

distribution and its impact on Himalayan glacier
dynamics. = The  multi-algorithm  ensemble
successfully characterized the complex
relationships between meteorological variables,
atmospheric composition, and BC deposition
processes across seasonal and diurnal timescales.
The wvalidation framework demonstrated robust
model performance while maintaining consistency
with established glaciological principles, providing
quantitative insights into BC's role as a critical
driver of accelerated glacier melting in the region.
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As shown in Figure 1, 2 the BC1 concentration
distribution demonstrates characteristic log-normal
behaviour typical of atmospheric aerosol species.
The correlation matrix reveals strong positive
correlations between BC1 and PM2.5 (r = 0.84),
indicating common emission sources.
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Temperature ~ shows  moderate  negative
correlation with BC1 (r -0.32), suggesting
enhanced dilution at higher temperatures. Outlier
detection identified 847 data points (0.8%)
exceeding three standard deviations, primarily

associated with extreme meteorological events.
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Fig. 3 Seasonal Analysis of Monthly Average BC Concentration

As shown in Figure 3, 4, 5, 6 the temporal
analysis demonstrates clear seasonal and diurnal
variability in black carbon concentrations with
pronounced patterns across multiple timescales.
BC1 and BC2 exhibit pronounced winter maxima
(December-February) with concentrations 2.3 times
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higher than summer minima, attributed to reduced
boundary layer mixing and increased biomass
burning during winter months, while the quantified
seasonal cycle shows winter-spring maxima
exceeding summer minima by factors of 2.1-2.8.
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Monthly analysis reveals peak concentrations
during March-April, coinciding with agricultural
burning and dust storm seasons, with the day-of-
year trend analysis demonstrating the influence of
monsoon circulation and dramatic concentration
reductions during monsoon onset (June-July).

n B
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Fig. 6 Temperature Variance

Diurnal patterns show bimodal peaks at 08:00
and 20:00 local time, corresponding to traffic rush
hours and domestic heating activities, with hourly
distribution patterns reflecting anthropogenic
emission cycles. The precipitation-wind
relationship reveals that rainfall events effectively
scavenge atmospheric BC, with wet deposition rates
increasing exponentially with precipitation intensity.
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Fig. 7 Wind Speed (Dry and Wet)

As shown in Figure 7, the enhanced correlation
matrix reveals complex interdependencies among
atmospheric  variables. The scatter matrix
demonstrates non-linear relationships between BC1
and meteorological parameters.

Notably, the wind rose analysis (Figure 4.3f)
indicates that highest BC1 concentrations occur
during low wind speeds (<2 m/s) from the
southwest sector, suggesting regional pollution
transport patterns. Temperature-BC1 relationships
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show seasonal dependency, with stronger negative The clustering effectively separates synoptic
correlations during winter months due to enhanced weather patterns influencing BC transport and

temperature inversions. deposition.
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As shown in Figure 8, 9 it reveals that the first
five principal components explain 85% of total Fig. 10 PM (2.5) Q-Q plot
variance, with PCl1 (34.2%) dominated by
atmospheric composition variables and PC2 (18.7%)
by meteorological factors. K-means clustering -
identified three distinct atmospheric regimes: clean ¢
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moderate pollution (Cluster 2, 41%), and heavy *
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As shown in 10, 11, 12, it confirms that BC1, BC2,

Fig, 9 PCA Scatter Plot and PM2.5 follow log-normal distributions
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(Kolmogorov-Smirnov test, p < 0.001), consistent
with multiplicative atmospheric processes.
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Fig. 12 BC2 Q-Q plot

The Q-Q plots demonstrate good agreement with
validating the
for

theoretical distributions,
appropriateness  of

subsequent modelling. Deviation from normality in

log-transformation

the upper tails indicates extreme pollution events
requiring special treatment in predictive models.
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Fig. 13 Cross Validation

As shown in Figure 13, 14, 15 it presents the model
performance comparison using rigorous Cross-
validation. The Random Forest algorithm achieved
the highest cross-validation R? score (0.847 =+

0.023), followed by Neural Network (0.832 = 0.031)

and Ridge Regression (0.798 + 0.028). Linear
Regression showed signs of underfitting (CV R* =
0.712), while Lasso Regression provided optimal
feature selection with comparable performance (CV
R%=0.789).

TABLE 1
VALIDATION TABLE AFTER TRAINING WITHOUT OVERFITTED
Model R? CV R? Mean Mean
Score Mean = | Squared Absolute
(Test) Std Error Error
(MSE) (MAE)
Linear ~0.802 ~0.798 £ | Moderate Moderate
Regress 0.009
ion
Ridge ~0.815 ~0.809 = | Slightly Slightly
Regress 0.010 lower than lower
ion LR
Lasso ~0.811 ~0.806 £ | Similar to Similar to
Regress 0.011 Ridge Ridge
ion
Rando ~0.895 ~0.860 £ | Lowest MSE | Lowest
m 0.020 MSE
Forest
Neural ~0.878 ~0.846 £ | Low Low
Networ 0.025
k
) 35.13 35.13 35.32
B
30
2
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15
10 9.13
5 375
0
& & & & &
& & & & &
) {)\ ) o \‘3
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Fig. 14 Mean Square Error (MSE)
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Fig. 15 Mean Absolute Error (MAE)

The predictions vs. actual scatter plot for Random
Forest demonstrates excellent agreement across the
full concentration range, with minimal systematic
bias. The Random Forest model shows strong
predictive accuracy with virtually no systematic
deviation. Predicted values align closely with
experimental measurements across all concentration
levels. The scatter plot confirms reliable model
performance with negligible bias throughout the
range.

ae

Fig. 16 Model Comparisons

As shown in Figure 16, 17, the comprehensive
model evaluation demonstrates robust performance
across multiple validation metrics. The learning

curves indicate optimal model convergence without
overfitting,
distributions demonstrate model stability, with
Random Forest showing the lowest variance (CV
std = 0.023).

while cross-validation score

=

Coefficent Valse

Fig. 17 Linear Regression (Coefficient-Stability)

Prediction intervals capture 94.6% of observations
within  95% bounds, confirming
appropriate uncertainty quantification, and residual
analysis reveals approximately normal distribution
(Shapiro-Wilk test, p = 0.082), validating model
assumptions. Feature importance analysis reveals
that PM2.5 concentration emerges as the most
important predictor (importance = 0.287), followed

confidence

by organic carbon OCI1 (0.198) and temperature
(0.156). Meteorological collectively
account for 43% of predictive importance, while
atmospheric composition variables contribute 57%.
The coefficient stability analysis for linear
regression demonstrates robust parameter estimates
across bootstrap samples, with temperature and
wind speed showing consistent negative effects on
BC concentrations.

variables
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Fig. 18 BC Concentration Over time

As shown in Figure 18, 19, it demonstrates the
relative contributions of dry and wet deposition
processes to total BC removal. Dry deposition
dominates under clear conditions (78% of total
removal), while wet deposition becomes significant
during precipitation events (>5 mm/hour).

D Bel @ avg)

— PM25 (24h avg)

014 2016 018 2020 22 2024

Fig. 19 Concentration Rolling Averages

The coated vs. uncoated BC analysis reveals that
62% of deposited BC exists in coated form,
enhancing its light absorption properties and glacier
melting potential. The temporal evolution shows

episodic deposition patterns closely linked to
synoptic weather systems.

TABLEI1
OVERFITTED ANALYSIS

Model R? CV R? CV R%Std

Score Mean +

(Test) Std
Linear 0.802 0.798 + 0.009
Regress 0.009
ion

Ridge 0.815 0.809 + 0.010
Regress 0.010

ion

Lasso 0.811 0.806 = 0.011
Regress 0.011

ion

Rando 0.895 0.860 + 0.020
m 0.020

Forest

Neural 0.878 0.846 + 0.025
Networ 0.025

k

V. CONCLUSIONS

This study demonstrates the potential of artificial
intelligence to enhance traditional environmental
analysis, offering detailed insights into black
carbon’s contribution to glacial ablation. The key
conclusions are as follows:

» Black carbon represents a critical short-lived
climate pollutant originating from incomplete
combustion processes of fossil fuels, biofuels, and
biomass materials, exhibiting potent light-absorbing
properties that significantly accelerate cryosphere
melting.

» Comprehensive temporal analysis of 100,000
hourly observations revealed pronounced seasonal
variability in BC concentrations, with winter-spring
periods demonstrating 2.3-2.8-fold elevation
compared to summer baseline levels, primarily
attributed to enhanced biomass combustion and
reduced atmospheric mixing.

* Diurnal  concentration  patterns  exhibit
characteristic bimodal distribution with peak
emissions occurring at 08:00 and 20:00 hours,
directly correlating with anthropogenic activities
including vehicular traffic surge and residential
heating/cooling practices.

* Source apportionment analysis utilizing
atmospheric transport modelling identified regional
anthropogenic  emissions as the dominant
contributor (66%) to Himalayan BC deposition,
with primary sources including residential solid fuel
combustion, vehicular exhaust, and transboundary
pollution transport from the Indo-Gangetic Plain.
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* The Himalayan glacial system serves as a critical
hydrological reservoir supporting over 750 million
inhabitants through major river systems (Indus,
Ganges, Brahmaputra), while simultaneously
functioning as natural climate variability buffers
through seasonal ice storage and meltwater release
mechanisms.

* Quantitative assessment through ensemble
machine learning approaches (Random Forest
achieving 89.5% predictive accuracy) demonstrated
that BC contributes up to 13% of annual glacier-
wide ablation through dual mechanisms:
atmospheric radiative forcing and surface albedo
reduction.

* Deposition process analysis revealed dry
deposition as the predominant BC removal
mechanism  (78% under clear atmospheric

conditions), with coated BC particles comprising
62% of total deposition, thereby enhancing light
absorption coefficients and accelerating glacier
melting rates.

* Precipitation events demonstrate effective
atmospheric BC scavenging capabilities, with wet
deposition rates exhibiting exponential correlation
with rainfall intensity, resulting in dramatic
concentration reductions during monsoon periods
(June-July).

* Principal Component Analysis identified five
primary components explaining 85% of system
variance, with atmospheric composition variables
dominating the first component (34.2%) and
meteorological factors constituting the second
component (18.7%).

* Machine learning model validation confirmed
robust predictive performance across multiple
algorithms, with Random Forest demonstrating
superior accuracy (R?* = 0.895) and minimal
overfitting, while maintaining physical constraint
compliance through integrated glaciological mass
balance equations.

* The integration of Al-driven predictive analytics
with traditional glaciological modelling provides

unprecedented capability for quantifying BC
impacts on glacier dynamics, enabling development
of targeted emission mitigation strategies with
immediate implementation potential.

* Given BC's short atmospheric residence time yet
significant immediate impact on glacier ablation
processes, emission reduction interventions
represent  high-leverage  climate  mitigation
opportunities with rapid beneficial outcomes for
cryospheric preservation and downstream water
security.
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