International Journal of Computer Techniques -— Volume 12 Issue 4, July - August - 2025

Al VOICE ASSISTANT ANDROID APP USING KEYWORD
MATCHING AND NLP

Mr. M. Bala Naga Bhushanamu
Assistant Professor
Department of Computer Science
Andhra University College of Engineering
Visakhapatnam, India
Email: balu91@gmail.com

Ms. Kuramana Yasodha
Student
Master of Computer Applications
Andhra University College of Engineering
Visakhapatnam, India
Email: kuramanayasodha9581977919@gmail.com

Abstract: Human voice interaction with a device is revolutionized in this day of digital world to make use of voice assistants
like Google Assistant, Amazon Alexa and Apple Siri; as a result, the user can communicate with these devices by entering
voice commands, and hence interaction with the device using hands is wavered. But these commercial helpers highly rely on the
availability of uninterrupted internet and processing in the cloud, which makes them all but useless out of reach to the internet
or where connectivity is poor. The proposed project attempts to deal with this limitation by proposing an Android-based Al
voice assistant that has been built with Java in Android Studio and is meant to operate offline with a lightweight rule-based
system. This assistant is able to perform important functions of the smartphone-calling, sending messages, alarm, photo taking,
and opening apps-without using the internet. It uses the native Google Android API SpeechRecognizer to handle voice input,
and Text-to-Speech (TTS) to show feedback as well as a minimal say-one-thing-get-another Natural Language Processing (NLP)
pipeline consisting of tokenization, normalization and pattern matching. The detection of commands is done based on
predetermined keyword formations that infer minimal calculations and stability on under powered devices. The assistant mainly
offline though supports the optional online capabilities of weather and Wikipedia queries when they are connected to a network,
rapidly switching modes depending on connectivity. Its user interface remains simple and open to access, and it provides voice
feedback input and feedback in visual and sound categories. It is worth noting that everything is done locally so that the
response is timely and privacy is enhanced relative to the cloud-based systems. The present project shows that primordial to the
use of Al and NLP, the proposed voice assistant is made functional and safe by covering all areas of efficiency that a voice
assistant should have, it can be made user-friendly, and with the resources available and common in rural, developing, or
connectivity-limited areas, a feasible and optimized voice assistant can be fashioned.

Keywords: Arttificial Intelligence, Text-To-Speech, Speech Recogintion, Java, XML, Android Studio, Natural Language
Processing (NLP) Techniques: Tokenisation, normalization, pattern matching, keyword matching, rule-based decision making.

TextToSpeech engine will give a clear voice response to
verify the actions completion.

I. INTRODUCTION

This Al Voice Assistant project offers a low profile,
performance, and privacy-aware solution to popular voice-
controlled systems by emphasizing off-line functionality and
resource-use. In contrast to the assistants with Al models
based on the internet and remote cloud servers, this
application conducts all commands locally through the
mixture of rule-based Al and simple NLP methods.
Fundamentally, the assistant can detect voice command
entered with Android SpeechRecognizer and tokenize it
followed by normalization to find commands using pattern
recognition and keyword matching. Every command has its
orderly route: after the voice signal gets transcribed into a
written text, the system looks through keywords and phrases
indicating an action, such as call, message, alarm, open or
capture. They are compared with the pre-configured functions
to activate Android intents- phone call, messaging, starting the
camera, etc. Regular expressions increase the performance of
the assistant to parse parameters of the command, and the

The navigation of the app is also modular which allows
simple extension and customization of commands. Being not
computationally expensive, it can be run on older or entry-
level Android devices. Besides, although the current version
of the app is mostly intended to work in offline access, there
are some selectively online-enabled elements of the app that
are currently supported in the case of a network connection.
This two-mode feature is like a best of both worlds- making
sure that there is reliable performance in disconnected set ups
but having the added functionality when connected to the
internet. All of it considered, the voice assistant project can
illustrate the ability to integrate the core Al principles,
simplified NLP, and built-in Android APIs that can be
assembled into a versatile yet user-friendly product that is
easy to implement in a low-resource setting.

II. LITERATURE REVIEW

The voice assistants have evolved from early days when
they were rule-based assistants to hybrid and deep learning

ISSN :2394-2231

http://www.ijctjournal.org

Page 242

http://www.ijctjournal.org

International Journal of Computer Techniques -— Volume 12 Issue 4, July - August - 2025

assistants with a wide range of connection dependence on
internet connectivity.

[1] Weizenbaum (1966) came up with a finding on rule-
based conversational agents, ELIZA. This agent used basic
pattern matching, keywords and trigger responses to resemble
conversation with humans. It did not have any actual
understanding but still worked entirely without being
connected to the Web and provided the basis of voice
assistants that use rules.

[2] Microsoft (2000) launched the Speech API (SAPI),
which allowed the creation of desktop applications that could
support offline voice activities. The system also had keyword
recognition, which would correspond user speech and execute
commands and was popular mainly because of its efficient and
local processing nature.

[3] In 2011, 2012, and 2014, Apple Siri, Google Now and
Microsoft Cortana banked on cloud-based NLP to introduce
their smart voice assistants. Although being smarter and able
to recognize more complex queries, they were based on
detection of specific keywords to be used along the major
functionalities. Most of the tasks with these assistants though
needed constant access to the internet.

[4] Myer and Tomar (2018) recently proposed a Time
Delay Neural Network (TDNN) on embedded feature to spot
the keyword. Their two-tier model was both lightweight and
optimised offline voice command recognition and was aimed
at devices that have low computer resources and could include
mobile and IoT devices.

[5] Choi et al. (2019) suggested Android voice assistants
with a Temporal Convolutional Network (TCN). Their model
provided a better performance in terms of speed and efficiency
compared to conventional convolutional networks, therefore,
enabling successful organizational offline wake-word
detection and thus it can serve as the best contender to be
incorporated into mobile applications.

[6] The use of voice in Android smart phones was under
development by Mahajan et al. (2019) to create voice-enabled
Android assistant on behalf of the visually impaired users.
Whenever the assistant needed to perform basic tasks such as
calling and navigation, it relied on cloud-based speech-to-text
services with a feedback keyword match. Nonetheless, it
required full use of internet connection to recognize the
speech.

[7] Rani et al. (2021) engaged a virtual assistant, which is
the online speech recognition API of Google. It used simple
logic of keywords of task execution in form of an if-else
statement like reading time or calls. Although it was simple in
the functional sense, it did not have an offline capability at all.

[8] An assistant developed by Vedika Jain et al. (2021) was
fitted to Python with an API (Speech Recognition Service API)
offered by Google that enabled speech-to-text conversion and
performed a task based on the rules of matching keywords. It
had the ability to turn on websites, display time but need
internet connection, in order to identify it.

[9] Patil and Patil (2021) created a chatbot that could be
used in academics on the RASA framework. The intent
classification and entity extracting systems were used on

training data which was loaded with keywords. Although it
made accuracy higher, it had to be continually online and
needed machine learning infrastructure.

[10] K. Gupta et al. (2021) built an android voice assistant
in Java programming language and Google speech API. The
system practiced the use of keyword matching and conditional
logics in task execution but nonetheless it entirely depended
on cloud-based voice recognition, a factor that limits offline
application.

[11] Basha and Anuradha (2022) presented a hybrid
assistant that allows recognizing speech offline with Vosk and
in the cloud with the help of the API of Google. The app
performed a keyword matching to attend actions and
maintained the service during connection variations.

[12] Siddiqui et al. (2023) suggested involving rules and
keyword matching to use an Android voice assistant offline
and more advanced cases at the cloud level.

[13] Vu et al. (2023) created the Android equivalent of a
voice assistant, Voicify, which is a deep learning voice
assistant. It pulled out the UI features through voice
commands and enabled users to control mobile applications
without any need to use hands. Most processing was local but
there was a need to update metadata and command handling
periodically online.

III. EXISTING SYSTEM

The current voice-based assistants have been transformed
into online solutions through the mobility-based technology.
A desktop-based assistant has been created on the basis of
Python libraries, including SpeechRecognition and pyttsx3, as
well as cloud-based assistance, Google Speech-to-Text. Such
systems utilized a multi-stage pipeline that included wake
word, speech recognition (ASR), natural language
understanding (NLU), dialogue management, and output (text-
to-speech (TTS).

Then the voice assistants became compatible with Android
mobile devices to provide more convenience and portability.
Most of these Android applications enabled the user to make
calls, send messages as well as search through a voice and
these were all made possible by SpeechRecognizer and
Assistant APIs provided by Google. Although these mobile
systems made access and use on the move reasonable, the
systems still required extensive use of the internet so that the
systems could process commands. It means that they were not
good in offline settings and could not be flexible or
customized, depending only on third-party cloud services

IV.PROPOSED SYSTEM

The offered system is a voice assistant with artificial
intelligence running offline on Android with the
implementation of Java through Android Studio whose
technology is based on a keyword-based call method in
identifying and actioning user instructions. In contrast to
classic desktop-based voice assistant and modern mobile
assistants based on cloud capabilities, this one both transcribes

ISSN :2394-2231

http://www.ijctjournal.org

Page 243

http://www.ijctjournal.org

International Journal of Computer Techniques -— Volume 12 Issue 4, July - August - 2025

voice input directly in hardware with the help of the native
Android SpeechRecognizer and locally executes the tasks
through Java-based Android API packages, including
AlarmManager and SMSManager.

e To use the SpeechRecognizer of the Android system
to do live speech-to-text translation and apply simple
NLP methods to identify any keywords.

e Such that voice controls the core Android operations
such as alarm clock set up, sending SMS, starting a
call, using a camera, and getting access to locations,
and accompanied with both visual and audible
feedbacks.

e To facilitate online functionalities to display weather
(on multiple locations using OpenWeatherMap API),
news, headlines (using News API) and general
queries (using Wikipedia API) when network
coverage is provided.

e To keep history of user interaction.

e In order to facilitate accessibility by implementing an
option of text input, so that the assistant can be used
by deaf or hard of hearing people.

e So as to impose security and privacy by means of
managing permissions properly.

e It should also have good offline support so that
people can make a call, send a text message, set an
alarm, make use of a camera, and so on without
being connected to the internet.

V. TECHNOLOGIES USED

The power of the application of this Al Voice Assistant
(Android) is achieved through the synergistic combinations of
powerful, traditional applications tools, native Android APIs,
and low-intensity processing techniques to support offline

processing, high-speed responsiveness, and cross-
compatibility.
Android Studio
Emulator Device

Code Editor

Ul Designer

Fig 1: Workflow of App development in Android Studio

e Java: Java is an object-oriented programming
language which allows developer to design the logic,
flow control and interaction with the Android system
within the app.

e Android Studio: Android studio is the official
android application development IDE that allows
development of, testing and debugging of android

applications. It offers tools such as emulators, layout
editors, and Gradle to do development in an efficient
way.

e AndroidSDK & APIs: The SDK& APIs applied are
Android SDK and Intent APIs to utilize native
mobile features in the app. It also uses online APIs
for providing various information like wikipedia,
openweathermap, news APIs.

e Regular Expressions (Regex): A Regex can be
applied to identify a pattern like time, date or
keywords in user commands to make the parsing of
these commands simplified.

e XML: XML provides access to developer to create
layout and interface elements of the app such as the
buttons and input fields.

o Text-To-Speech (TTS) engine: The native TTS
engine of android will process the text response into
a spoken format giving the audible response.

o SpeechRecognizer API: This APl records and
translates what the user is said into text format for
future processing.

VI.METHODOLOGY

The process embraced in this Android software Al Voice
Assistant aims at integrating basic Natural Language
Processing (NLP) and keyword-based intent detection in the
context of determining the meaning behind the user
commands. The main work cycle is the transformation of
speech to the text with the help of the speech recognition
apparatus which is built-in as a part of Android operating
system. The app then applies tokenization, keyword detection,
pattern matching to get intention in the user input. According
to this established desire, related activities are aligned based
on Android system APIs and the overall feedback is given
through Text-To-Speech (TTS).

|

| User Interface ! »

" Voice Recognition ‘

Voice or text input

through Android
SpeechRecognizer
class

]

‘ Understand the User

Intent from the
command

|

‘ Perform the request ‘

action/task on the
device

R
| Convert response into
speech using
TextToSpeech class

| Give speech response |
to User |

Fig 2: Workflow of Android Voice Assistant

A. Speech to Text:

ISSN :2394-2231

http://www.ijctjournal.org

Page 244

http://www.ijctjournal.org

International Journal of Computer Techniques -— Volume 12 Issue 4, July - August - 2025

The application takes the help of the inbuilt SpeechRecognizer
and RecognizerIntent classes provided by Android platform
with the help of which audio input is obtained in written form.
On clicking on the microphone button, the app asks for the
audio recording permission and proceeds to open the speech
recognition screen.

B. Normalization of Text:

The normalization of the input is made after the receivable
text of the speech recognizer or the input field. This includes
capitalizing text to lowercase to allow non-case matching of
keywords, strip leading and trailing whitespace and normalize
the text to gain a more convenient pattern search.
Normalization confirms that the command is not influenced
by the differences as to how the users are speaking or typing.

C. Tokenization and Keyword matching:

The normalized text has implicit tokenization based on the
string operations. The app looks to see the keywords or
phrases like the word call, the set alarm, the sending SMS, the
word weather, or the opening of the YouTube. The app can
determine user intent using rule-based approach without using
heavy or complex NLP or machine learning. This lightweight
module makes it faster to process on low-resource devices.

D. Regular Expression Pattern Matching:

In case of structured commands such as setting an alarm, the
app employs regular expressions. As another example, the
regex ALARM PATTERN retrieves the hour, minute, and
period (AM/PM) in a command such as: “set alarm at 6:30
AM.” Such an exact matching allows an accurate parameter
extraction which is required during the scheduling of alarms.

E. Rule Based and Intent Recognition Decision Making:
After the input is compared with particular keywords or
patterns, the app applies rule-based decision in order to detect
the intent. All the intents are tied to a certain mode of
operation: calling launches the contact picker, SMS initiates
message interface, alarm establishes time, even activity such
as weather, news, Wikipedia, or maps.

F. Execution of Action with Android APIs:

After reading out the intention of the user, the app will
perform the action upon using the Android APIs. As an
example, it can schedule alarms via AlarmManager, , send
text messages via SmsManager, launch other apps with the
Intent. Everything is closely connected with the system of
permissions and intent of Android to guarantee safe and
effective performance. Error handling is also installed to cope
with such cases as missing permissions or services.

G. Response Generation of Text-to-Speech:

Once an action is done with a command, the assistant verbally
responds with the help of the TextToSpeech built-in engine in
Android. This makes the user interaction stronger as actions
are confirmed on an audible level

H. Management of History:

To make it easier to use and track, every interaction (both
what the assistant responds with and what are the users
responding with) is logged in a list of history. This history is
presented by custom UI dialog, so that user can see previous
commands and answers.

VII. USE CASE DIAGRAM

Voice Assistant App

Make Phone Call

Get Day
Get Date

Get Time

— -
Set Alarm

Open App
Take Photo

Send SMS

_Vlew Chat History

Fig 3: Use case diagram for Android Voice Assistant

VIII. RESULTS AND ANALYSIS

The Sophia Al Voice Assistant was tested using numerous
parameters such as the precision of the command recognition,
promptness of the execution, offline usage, resources and the
user satisfaction.

A. Functionality-Testing:

The offline functionality that the assistant was tested in core

of the functionality comprised the following:
Table I: Sample Offline Test cases

Function||Test Command|| Expected Result || Output
Initiate || “Call [contact Opens d1al§r and
» calls specified ||Successful
call name]
person

ISSN :2394-2231

http://www.ijctjournal.org

Page 245

http://www.ijctjournal.org

International Journal of Computer Techniques -— Volume 12 Issue 4, July - August - 2025

Function||Test Command|| Expected Result || Output
Sends SMS to
Send “Message to specified person
SMS [contact]” with message Successful
specified
“Ring alarm at || Rings alarm at
Alarm 7 AM” specified time Successful
Get “What is the || shows the current Successful
time/date|| time or date?” time/date 4 u
Launch Op eff Camera Starts the asked
a / “Open application Successful
PP WhatsApp” PP
Photo C.apture”an Camera is opened Successful
image to take photo
Offline
TTS Any coglrx},?nd Speaks preloaded Successful
like “Hi answer
Response

It could be recognized that the system could accept 95-100 per
cent of the voice commands that were related to the offline
functions in the case of quiet environment.

B. Precision of Speech Recognition:

Quiet Environment: Per Cent accuracy of speech
recognition was 96 -98 on tested indoors with
minimum sounds.

Medium Noise: With the noise level, when there was
a little amount of fan noise or there was a distant
conversation, accuracy reduced by a small percentage
of 85 -90.

C. Response period:

Table II: Average response time of assistants

Operation Mean Response Time

Voice to text conversion

0.8 — 1.2 seconds

Command parsing &

. Less than 0.5 seconds
matching

Execution of Action

1.0 — 2.0 seconds

The overall average time of response varied between 2 and 3
seconds, making the assistant swift enough to be of a real-time
interaction.

D. Efficiency and consumption:

RAM memory: memory-averaged: 4060 Mb.

Consumption/battery: Usage low during short
periods (draining less than 3 per cent in 30 minutes
of use).

App size: The size of the in-built APK file was less
than 20 MB as there were no external ML libraries
and cloud SDKs.

E. Internet-enabled Online Feature Performance:

All the online attributes were reliant on the availability of the
network and exhibited a little slower latency (5-7 seconds).

Table I1I: on-line sample test cases

Control Command Output Result
Weather ||“What’s the weather || Retrieves real Successful
Info in Visakhapatnam?” || weather data
Wikipedia| “About India on | Rcads brief
Search Wikipedia” intro from ||Successful
P Wikipedia
News Reads first 5
. “Get latest news” news Successful
Headlines .
headlines
Location || “Where do we find || Google Maps Successful
Finding Taj Mahal?” Launches
F. Examples of Figures:

To demonstrate in a representative way how the work of
Sophia Al Voice Assistant and its interface is carried out, a
series of screenshots were made during the various tasks of
realization.

ISSN :2394-2231

http://www.ijctjournal.org

Page 246

http://www.ijctjournal.org

International Journal of Computer Techniques -— Volume 12 Issue 4, July - August - 2025

®©

Hello, I'm Sophia

How can I assist you?

Speak or Type a command

]

Fig 4: UI Design

Speak now...

Fig 5: Speech Recognition

CONCLUSIONS

The android app that implements the Al Voice Assistant is
a Java program that was designed in Android studio since it
offers a low-weight, secure and effective voice interface
framework. It is based on rule-driven Al as well as relatively
uncomplicated NLP techniques such as tokenization,
normalisation & pattern matching to comprehend the user
commands. Key tasks of calling, messaging, setting of the
alarms and opening apps can be performed offline despite

having all offline features turned off. It will be suitable to
users in low connectivity regions or those who appreciate
privacy due to its offline feature. Keyword matching and
regular expressions execute the commands fast,
deterministically, and with minimal resource consumption.
The application is playable on even low-end android devices.
It runs on an easy to use and understand interface and has no
requirements on cloud storage yet presents a session-based
history tracking. Offline commands take 1-2 second and
online features such as weather updates are a little slower. It
can easily operate by incorporating Android life such as
SpeechRecognizer and TextToSpeech. All in all, the
application is simple enough and functional at the same time
to provide a stable offline-first voice assistant experience.

FUTURE SCOPE

There is the Al Voice Assistant app which is already quite
effective in connecting with users offline in voice mode, but
there is huge opportunity in improvement. The future
enhancements may include the support of multiple languages,
the offline language packs, as well as personalization of the
voice commands. Other capabilities such as an offline
knowledge base, hotword detection, gestures and safety
features such as emergency mode, chat history export and
many more would increase its functionality immensely. These
advancements are supposed to make the app a better, more
varied, smarter, and more accessible helper, particularly to
offline and privacy-oriented settings.

REFERENCES

[1] J. Weizenbaum, 1966. ELIZA -A Program to Study
Natural Language Communication between man and machine.
18 (9):36, 45), 1975.

[2] Microsoft Corporation, 2000. SAPI Microsoft Speech
API. Microsoft DevNet.

[3] Apple Inc., Google LLC, and Microsoft corp., 2011-
2014. Siri, Google Now and Cortana: Voice applications on
Smartphones. Different product documents and releases.

[4] Myer A. and Tomar D., 2018. Time Delay Neural
Network with an efficient Keyword Spotting in the Embedded
Systems. International Journal of Computer Applications 182
(48), pp. 1

[S] H. Choi, J. Kim and S. Lee, 2019. Lightweight
Temporal Convolutional Networks on Keyword Spotting in
Mobile Devices. Interspeech, 1-5.

[6] A. Mahajan, P. Patil, S. Kale, 2019. Android Voice
Enabled Application (The Visually impaired). International
Research Journal of Engineering and Technology (IRJET).
2020, 6 (4) Article (3294-3297).

[7] Rani, S., Verma, M., and Goel, A., 2021. Android
Based Voice-Controlled Virtual Assistant. International
Journal of Engineering Research & Technology (IJERT),
Vol.10, No. 5, p.108- 112.

[8] V. Jain, S. Desai and K. Shah, 2021. Automate Python-
Based Personal Voice-Based Assistant. International Journal

ISSN :2394-2231

http://www.ijctjournal.org

Page 247

http://www.ijctjournal.org

International Journal of Computer Techniques -— Volume 12 Issue 4, July - August - 2025

of Research in Engineering, Science and Management; Vol. 4,
No. 6; pp. 241-244.

[9] P. Patil and P. Patil, 2021. Chatbot or RASA College
Enquiry Chatbot. International Journal of Engineering
Research and Technology (IJERT), Vol. 10, No. 3, 234- 237.

[10] K Gupta, R Jain, and S Verma, 2021. Voice Assistant
Android-Based Application Google Speech API. International
Journal of Computer Sciences and Engineering 9 (2) 34-39.

[11] Basha, S. and Anuradha, V., 2022. Andoid Voice
Assistant (Hybrid) Vosk Google Speech API. International
Journal of Scientific Research in Computer Science,
Engineering and Information Technology, 8: 4, 98-103.

[12] Siddiqui, I., Kumar, A and Mehta, R., 2023. Andro
VArray 1.C.H. - Meio-Nome Cele Mil. 2011International
Journal of Innovative Technology and Exploring Engineering
(IJITEE) No.12, Vol.1, pp.110-115.

[13] T. Vu, M. Le and D. Tran 2023. Voicify: Deep
Learning based Mobile Voice Assistant. In: Proceedings of the
IEEE AIMC Conference, pp. 67 72.

ISSN :2394-2231 http://www.ijctjournal.org

Page 248

http://www.ijctjournal.org

	AI VOICE ASSISTANT ANDROID APP USING KEYWORD MATCH

