
International Journal of Computer Techniques -– Volume 11 Issue 6, December2024

ISSN :2394-2231 http://www.ijctjournal.org Page 72

Vandana Sharma
Technology Specialist, Leading Technology Organization, San Francisco Bay Area, CA, US

vandanatripathi01@gmail.com

Abstract:

Abstract - In modern software development, the shift from monolithic to distributed microservices
architectures has introduced new challenges in ensuring data integrity and consistency. As systems scale and
become more decentralized, organizations must adopt strategies that preserve data reliability, even in the face of
network failures, service outages, or communication issues. This article explores the critical role of idempotency
and retries in handling data integrity within distributed systems. By employing these techniques, developers can
design systems that gracefully recover from failures and maintain consistent data, ensuring smooth operations
across microservices without compromising performance or scalability.

Keywords - ACID Transactions, Data Integrity, Distributed Systems, Database Consistency, Scalability, Fault
Tolerance, NoSQL Databases, SQL Databases, Atomicity, Durability, Consistency.

Data Consistency in Microservices: Leveraging ACID
Transactions for Reliability

REVIEW ARTICLE OPEN ACCESS

mailto:vandanatripathi01@gmail.com)
http://www.ijctjournal.org


International Journal of Computer Techniques -– Volume 11 Issue 6, December2024

ISSN :2394-2231 http://www.ijctjournal.org Page 73

1. Introduction
Building scalable and flexible systems has grown more

dependent on the adoption of microservices architecture in the
ever-changing field of modern software development.
Organisations face new data integrity and consistency
concerns when they switch from traditional monolithic
architectures to distributed microservices. Maintaining the
system’s overall health and functionality depends on data
integrity and reliability across microservices. However, in
distributed environments, where services communicate
asynchronously over networks, the risk of partial failures,
retries, and duplicated requests grows significantly. Ensuring
data integrity in such scenarios requires robust mechanisms to
handle these challenges.

Idempotency and retry strategies offer effective solutions
for mitigating data inconsistency issues in distributed systems.
Idempotency guarantees that repeated operations produce the
same result, preventing unintended side effects, while retry
mechanisms ensure that temporary failures do not
compromise the system’s stability. This article delves into
how these techniques can be applied in microservices to
preserve data integrity, even in the face of failures, and
provides best practices for their implementation.

2. Addressing Data Integrity Challenges in
Microservices
Data integrity is a critical challenge in the microservices

architecture, where systems are composed of independently
deployable and loosely connected services. Unlike monolithic
systems, microservices frequently communicate over
networks, introducing latency and increasing the potential for
errors. Ensuring consistent and reliable data flow between
these services is crucial, as data inconsistencies can have
significant consequences—ranging from poor user
experiences to faulty business decisions, and even decreased
system reliability.

In a distributed environment, traditional monolithic
systems do not face the same set of issues. Microservices
require meticulous coordination of data transactions [7] across
multiple services, each possibly managing its own database.
Without proper planning, challenges such as race conditions,
data conflicts, and eventual consistency problems can arise.
To achieve the promised agility and scalability of
microservices, organizations must adopt strategies that
address these challenges and ensure robust data integrity
throughout the system.

3. The Core Principles of ACID Transactions in
Ensuring Data Integrity
ACID transactions [8] ensure the reliability and

consistency of database operations, even during system
outages or disruptions. The four key principles of ACID

transactions—Atomicity, Consistency, Isolation, and
Durability—are crucial for maintaining data integrity.

 Atomicity: Each transaction is treated as a single,
indivisible unit of work. Either all changes within a
transaction are successfully committed, or none are,
ensuring that the system remains consistent even if a
failure occurs during the transaction process.

 Consistency: ACID transactions guarantee that the
database transitions from one valid state to another
while adhering to defined constraints and rules. This
ensures data integrity by preventing partial or
incorrect transactions from being applied.

 Isolation: Transactions are executed independently
from one another, avoiding interference or conflicts
between concurrent operations. Isolation ensures that
the outcome of one transaction is not influenced by
other simultaneous transactions, helping to prevent
race conditions and data conflicts.

 Durability: Once a transaction is committed, its
effects are permanent, persisting even in the event of
system failures. Durability ensures that the results of
a transaction survive power outages, crashes, or other
catastrophic events.

Fig. 1 ACID Properties

4. Importance of ACID Transactions in
Maintaining Data Consistency

In the context of distributed microservices,
maintaining data consistency is a formidable challenge
due to the decentralized nature of the architecture.
Microservices often interact asynchronously, with each
service managing its own database, leading to potential
data inconsistencies. ACID (Atomicity, Consistency,
Isolation, Durability) transactions play a crucial role in
addressing these challenges, ensuring robust data integrity
and system reliability. Here are several key reasons why
ACID transactions are vital in microservices architectures:
Prevention of Data Inconsistencies
ACID transactions are designed to prevent
inconsistencies that arise from partial or failed operations.
By enforcing the principle of atomicity, ACID ensures

http://www.ijctjournal.org


International Journal of Computer Techniques -– Volume 11 Issue 6, December2024

ISSN :2394-2231 http://www.ijctjournal.org Page 74

that either all changes within a transaction are committed
or none. This "all-or-nothing" approach helps to maintain
a consistent state across services and databases, ensuring
that incomplete transactions never leave the system in an
unstable state.

Error Handling and Recovery
In distributed systems, failures such as network

disruptions, service crashes, or power outages are inevitable.
The rollback capability of ACID transactions ensures that, in
the event of an error, the system can revert to a valid state as if
the transaction never occurred. This automatic rollback is
crucial for recovering from unexpected events and preserving
data accuracy, avoiding situations where a partial transaction
corrupts the system.
Coordination Across Multiple Services

ACID transactions allow for smooth coordination across
multiple microservices. In a distributed architecture, data
modifications often span multiple services and databases,
requiring strong consistency guarantees. ACID ensures that all
participating services in a transaction can maintain a globally
consistent state. This is especially valuable for critical
business operations like payments, order processing, and
inventory management, where data must be synchronized
across multiple components.
Data Integrity in Concurrency

The isolation property of ACID transactions guarantees
that transactions operate independently, preventing
interference between concurrent operations. This is
particularly important in microservices, where multiple
services may attempt to read or write to the same data
simultaneously. Isolation ensures that race conditions and
conflicts are avoided, maintaining data consistency even in
highly concurrent environments.
Durability and System Reliability

Durability ensures that once a transaction is committed, its
changes persist, even in the face of catastrophic system
failures like server crashes or power outages. This guarantees
that important data is never lost after it is written, enhancing
system reliability. For distributed microservices, where
failures can propagate across services, durability is essential
for maintaining trust in the system’s data integrity.
Ensuring Business Rule Compliance

ACID transactions enforce consistency by ensuring that
data always adheres to predefined constraints and business
rules. This is crucial for applications that rely on accurate and
reliable data to make critical decisions. Whether it’s ensuring
that financial transactions adhere to regulatory requirements
or that inventory levels remain accurate, ACID helps maintain
the integrity of data across distributed services.

In summary, ACID transactions provide a robust
mechanism for ensuring data consistency, even in the most
complex distributed microservices environments. They offer a
safeguard against errors, inconsistencies, and race conditions,
making them indispensable for maintaining the integrity and
reliability of modern software systems.

5. The Role of Databases in Ensuring ACID
Transactions in a Microservices
Environment

Databases are crucial components in a microservices
architecture, managing and storing data across distributed
services. Preserving ACID (Atomicity, Consistency,
Isolation, Durability) properties in such environments is
challenging, especially when dealing with distributed
systems. Various databases have evolved to address these
challenges, offering different strategies to maintain data
integrity and consistency. Here’s how databases like
YugaByteDB, MongoDB [4], Cassandra [2], and others
handle ACID transactions in distributed microservices:
YugaByteDB [3]: YugaByteDB employs a distributed
architecture that enables ACID transactions across
multiple nodes. It provides strong consistency, fault
tolerance, and combines the scalability of NoSQL with
the transactional guarantees of SQL. This makes it well-
suited for organizations requiring high availability
without sacrificing data integrity in distributed
microservices.
MongoDB [4]: As a NoSQL database, MongoDB
traditionally lacked full ACID compliance, but the
introduction of multi-document transactions addresses
this limitation. Organizations can now ensure data
consistency across multiple documents and collections,
which is vital for maintaining transactional integrity in
microservices environments where data is dispersed
across different services.
Cassandra: Known for its scalability and availability,
Cassandra provides tunable consistency levels, allowing
organizations to strike a balance between performance
and data integrity. While it does not natively support full
ACID transactions, Cassandra offers lightweight
transactions to handle specific use cases where atomicity
and consistency are necessary in distributed systems.
Cockroach DB [5]: Cockroach DB is a distributed SQL
database that excels at providing ACID transactions
across a globally distributed cluster. It uses a consensus
algorithm to ensure strong consistency and durability,
making it an ideal choice for enterprises that need both
horizontal scalability and transactional integrity across
multiple geographic regions.
Foundation DB [6]: Foundation DB is a distributed key-
value store designed to deliver strong ACID guarantees in
a distributed environment. Its unique architecture allows
multiple services to execute transactions safely,
maintaining consistency across microservices without
sacrificing scalability.

Google Spanner [1]: Google Spanner is a globally
distributed relational database service that supports ACID
transactions. By leveraging synchronized clocks and a
highly available infrastructure, Spanner provides strong
consistency and scalability, enabling organizations to
maintain data integrity across microservices operating in
different regions.

http://www.ijctjournal.org


International Journal of Computer Techniques -– Volume 11 Issue 6, December2024

ISSN :2394-2231 http://www.ijctjournal.org Page 75

PostgreSQL with Citus: PostgreSQL, when combined with
the Citus extension, can provide distributed ACID
transactions. This extension distributes PostgreSQL across
multiple nodes while retaining its strong ACID properties,
making it a suitable choice for microservices architectures
that require both relational database capabilities and
horizontal scalability.

Each of these databases tackles the complexities of
maintaining ACID properties in distributed microservices
environments, offering organizations a range of options that
balance scalability, availability, and data integrity. By
understanding the strengths and trade-offs of each system,
organizations can choose the right database to meet their
specific requirements for data consistency and reliability.

6. Conclusion
In this comprehensive exploration of ACID

transactions within modern distributed microservices
architecture, we’ve highlighted the fundamental importance
of maintaining data integrity in an increasingly
decentralized and dynamic environment. As microservices
continue to evolve, they present both challenges and
opportunities for organizations striving for consistency,
reliability, and scalability.

ACID transactions remain a cornerstone in ensuring
data integrity across distributed services, offering robust
solutions for managing complex transactions. However,
maintaining this level of consistency requires not only a
solid understanding of ACID principles but also adaptability
to evolving technologies and architectures.

As organizations face the ongoing complexities of
microservices, embracing innovation, adopting best
practices, and learning from real-world case studies will be
essential to building resilient systems.

Ultimately, the key to success in a microservices
architecture lies in a balanced approach that combines the
core strengths of ACID transactions with emerging
technologies and strategies. By doing so, organizations can
confidently navigate the future, creating scalable, reliable,
and future-proof distributed systems.

References
[1] Google Spanner. Google Cloud Documentation.

https://googleapis.dev/nodejs/spanner/latest/Spanner.html
[2] Cassandra Documentation. Apache Cassandra Documentation.

Retrieved from Apache Cassandra :
https://cassandra.apache.org/doc/latest/

[3] YugaByteDB Documentation YugaByteDB:
https://docs.yugabyte.com/

[4] MongoDB Documentation. Multi-Document Transactions in
MongoDB: https://www.mongodb.com/docs/

[5] Cockroach DB Documentation.
https://www.cockroachlabs.com/docs/stable/why-cockroachdb

[6] Foundation DB Documentation:
https://apple.github.io/foundationdb/

[7] AWS Whitepaper. Amazon Aurora: A Highly Available
Relational Database Built for the Cloud
https://docs.aws.amazon.com/whitepapers/latest/migrating-
databases-to-amazon-aurora/migrating-databases-to-amazon-
aurora.html

[8] IBM Developer: https://www.ibm.com/docs/en/db2-big-
sql/7.1?topic=environment-transactional-tables-in-db2-big-sql

https://cassandra.apache.org/doc/latest/
http://www.ijctjournal.org

