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Abstract:

Identifying heavy hitters is essential for maintaining high network performance and security. Heavy
hitters can signal potential issues such as network congestion, cyberattacks, or misconfigurations.
Meanwhile, P4 programmable switches offer a promising solution for offloading heavy hitter detection to
the data plane. Nevertheless, current methods are often limited by their dependence on control plane
decisions, which introduce latency and overhead or lead to inefficient predictions and suboptimal real-time
performance due to the data plane's constrained computational capability. This paper introduces the
TimeSlot Predictor (TSP), a novel real-time flow-level prediction method that employs decision tree
models on P4 programmable switches to address these challenges. TSP divides network flows into discrete
time slots for real-time analysis, utilizing temporal data to forecast future heavy hitter trends and predict
heavy hitters within current time slots. This approach enhances prediction accuracy and adapts to dynamic
traffic patterns. We have implemented TSP on both P4 hardware switches (with Intel Tofino ASIC) and
software switches (BMv2). Extensive experiments demonstrate that TSP predicts 98% of heavy hitters
within an average time of 6 seconds.
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I. INTRODUCTION
In high-performance networks, efficiently

identifying heavy hitters is essential for maintaining
both performance and security [1]. Heavy hitters,
which are flows consuming a significant portion of
network resources, are crucial for applications such
as traffic engineering [2], anomaly detection [3],
and network management [4]. Traditionally, heavy
hitter detection is implemented on servers [5], [6]
with general-purpose CPU, which requires
sampling from switches, incurring communication
overhead and delay.
The rapid development of programmable data

planes, especially P4 programmable switches,

offers new opportunities for heavy hitter detection
[7]. Programmable data planes leverage the
coordination of multiple stages of Match Action
Units (MAUs) deployed in pipelines, enabling
programmability of the pipeline in the data plane.
Utilizing the ASIC chips in the programmable data
plane, P4 programmable switches can achieve line-
rate throughput (e.g., 6.4 Tbps in Intel Tofino) [8].
Offloading the heavy hitter logic to the
programmable data plane can reduce
communication overhead between the data plane
and the control plane (server), saving the CPU load
on servers. There are many works focus on heavy
hitter detection on the data plane, such as Hedera
[9], Helios [10], and EFD [11]. To identify heavy
hitters more timely, so operators can respond
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TABLE I

Comparison of different works for heavy hitter.

quickly, heavy hitter prediction in the data plane is
necessary.
However, achieving effective heavy hitter

prediction in the data plane is challenging. First,
machine learning models for prediction are
constrained by limited computing capability (e.g.,
do not support floating-point and multiply-divide
calculations) and memory resources (e.g., ∼
120Mbits SRAM per pipeline for Tofino ASIC).
Additionally, the data plane pipeline is designed
with a limited number of stages (e.g., 12 stages in
Tofino ASIC), and its inability to support logical
operations such as loops further complicates the
development of efficient prediction algorithms.
Second, the dynamics of network traffic flows
make it more complex and difficult to perform
effective heavy hitter prediction, which requires the
ability to adapt to these dynamics and make
decisions in real time.
Existing solutions either need the assistance of

control plane or fail to adapt to the dynamics. For
example, some methods [11], [12] deploy decision
trees in the control plane to predict heavy hitters
based on information collected by the
programmable data plane, incurring communication
overhead and latency between the control plane and
the data plane, resulting in delayed prediction
results. Some solutions deploy pre-trained decision
tree models entirely in the data plane e.g., pHeavy
[13] and pForest [14]. These methods can achieve
high throughput and prediction accuracy, but
without considering the temporal changes of flows

making them insensitive to transient network
changes and challenging to predict in real-time in
dynamic network environments.
To address the above challenges, this paper

proposes a time slot-based heavy hitter prediction
method, named TimeSlot Predictor (TSP). TSP
leverages decision tree machine learning models to
predict heavy hitters in real-time, directly on both
P4 hardware switches (with Intel Tofino ASIC) and
software switches (BMv2). By segmenting network
traffic data into discrete time slots and only
recording the most recent data for making decisions,
TSP performs effective flow-level prediction
adapting to the network dynamics. Optimizing
feature extraction and model efficiency is crucial to
operate within these constraints while maintaining
high prediction accuracy and processing speed. To
summarize, we mainly make the following
contributions:

1)Real-time heavy hitter prediction on data
plane: We proposed a time slot-based heavy
hitter prediction method, called TSP, which
performs real-time prediction on P4 switches
using decision tree machine learning models.
By segmenting network traffic data and
applying these models, TSP improves
prediction accuracy and efficiency.

2)Optimized feature extraction and model
design: To handle pipeline constraints of P4
programmable switches, we proposed an
optimized feature extraction scheme and
training efficient machine learning models that

Works Methods Category Entirely on Data
Plane

Slot-based (Real-
Time) Lightweight

APPR [3] Sampling Detection × × -
NetFlow [5] Sampling Detection × × -
HG-LDP [6] Sampling Detection × × -
Hedera [9] Sampling Detection × × -
Helios [10] Sampling Detection × × -
Flowseer [12] Decision Tree Prediction × × -
EFD [11] Decision Tree Prediction × × -

Hashpipe [15] Top-k Detection ✓ × ✓

Devoflow [16] Top-k Detection ✓ × ✓
OEFD [17] Top-k Detection ✓ × ✓

pHeavy [13] Decision Tree Prediction ✓ × ×
pForest [14] Decision Tree Prediction ✓ × ×
TSP(ours) Decision Tree Prediction ✓ ✓ ✓
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operate on data plane, ensuring high
performance under limited resources.

3)Experimental validation and performance
evaluation: We have implemented TSP on
both P4 hardware switches (with Intel Tofino
ASIC) and software switches (BMv2).
Extensive evaluations demonstrate the
effectiveness and performance of TSP. Results
show that TSP predicts 98% of heavy hitters
within an average time of 6 seconds.

The rest of the paper is organized as follows:
Section II discusses related works and motivations
for identifying heavy hitters on data plane. Section
III presents the system design of TSP, including the
training phase in the control plane and the inference
phase in the data plane. Section IV evaluates the
proposed methods and provides performance results
under different system configurations. Finally,
Section V concludes the paper.

II. RELATEDWORKS
The identification of heavy flows in network

traffic is crucial for ensuring network performance
and security. APPR [3], NetFlow [5] and HG-LDP
[6] are examples of server-based approaches that
leverage the general-purpose computing power of
CPUs to implement complex logic for effective
heavy hitter detection. While these methods can be
highly effective, they often introduce significant
CPU load. Additionally, the bloated software
protocol stack makes it challenging to meet the high
throughput demands of high-performance networks.
To address these issues, recent research has turned
its attention to programmable data planes. As
shown in Table I, existing solutions implemented in
programmable data planes can be categorized into
two categories: detection, and prediction.
A. Heavy Hitter Detection
Many methods estimate the presence of heavy

hitters by analyzing random traffic samples with the
assistance of the control plane, e.g., Hedera [9] and
Helios [10]. Such approach inevitably introduces
communication overhead between the control plane
and the data plane. Works like Hashpipe [15],

Devoflow [16], and OEFD [17] implement P4-
based algorithms that use a multi-stage pipeline to
track the top k heavy flows with high accuracy.
These approaches can quickly process large
volumes of data with minimal computational
resources. However, they often face challenges in
balancing detection accuracy and resource
consumption. Their reliance on predefined
thresholds and packet counters can make them less
adaptable to dynamic network conditions and limit
their ability to predict future trends. And it is
difficult to predict and prevent heavy hitters that
will occur in the future.
B. Heavy Hitter Prediction
Some works deploy Machine Learning-based

techniques on the control plane. FlowSeer [12]
employs a two-stage prediction algorithm, utilizing
decision trees and Hoeffding trees for improved
accuracy. Similarly, EFD [11] deploys decision
trees on the control plane to predict heavy hitters
based on information collected from the data plane.
These methods leverage the high throughput and
low latency characteristics of the data plane to meet
the demands of high-performance networks.
However, these methods rely on the control plane
for detection, which still incurs communication
overhead and latency between the control plane and
the data plane, resulting in delayed prediction
results.
Some works implement efficient prediction with

Machine Learning-based techniques entirely on the
data plane. pHeavy [13] uses decision tree models
directly implemented on the programmable data
plane for packet-level heavy hitter prediction.
pForest [14] leverages random forest models for
network flow prediction, optimized for the
computational constraints of P4 switches. While
these methods address some issues, they often lack
the capability for temporal predictions, limiting
their effectiveness in dynamic network
environments. They primarily focus on packet-level
prediction and involve complex operations that do
not fully exploit the temporal dynamics of network
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Fig. 1 TSP Pipeline Overview.

traffic. Compared to top-k methods, these
approaches require storing more flow information,
which consumes more memory resources and can
be less lightweight. Moreover, the reliance on
global data can delay the quick identification of
sudden traffic bursts due to the dominant influence
of historical data.
Overall, while significant progress has been made

in the field of heavy hitter prediction, challenges
remain in achieving real-time, accurate, and
resource-efficient prediction, especially in highly
dynamic network environments.

III. SYSTEM DESIGN
A. Overview
As shown in Figure 1, the system design of TSP

comprises the control plane and the data plane. The
control plane is responsible for model training,
utilizing a decision tree classifier with traffic
features and addressing data imbalance with One-
sided Selection and Random Under-Sampler. It
processes the dataset through four stages: Feature
Extraction, Data Preprocessing, Training, and
Parameter Tuning, resulting in a deployable
decision tree model. This model’s corresponding
p4 code is compiled and deployed on the data plane
via P4C.
In the data plane, TSP performs real-time heavy

hitter prediction by recording flow information as
packets traverse the pipeline and periodically
executing the decision tree based on slot_size. The

decision tree model ensures a balance between
accuracy and latency by applying ACC Module and
ASAP Module flexibly.
B. Feature Extraction

1) Feature Selection: To facilitate effective heavy
hitter prediction, TSP selects network traffic
features that are feasible to implement within the
constraints of a programmable data plane [18].
Table II enumerates these features, including
various metrics related to packet inter-arrival time,
packet length, and TCP flags.

TABLE II
Network Traffic Features

Name Description

IAT max Maximum packet inter-arrival time
of the flow

IAT min Minimum packet inter-arrival time
of the flow

IAT mean Average packet inter-arrival time
of the flow

Length max Maximum packet length of the
flow

Length min Minimum packet length of the flow

Length mean Average packet length of the flow
Length total Total packet length of the flow
ACK flag ACK flag counter of the flow
FIN flag FIN flag counter of the flow
SYN flag SYN flag counter of the flow
PSH flag PSH flag counter of the flow
RST flag RST flag counter of the flow
ECE flag ECE flag counter of the flow

Packet count Packet counter of the flow
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2) Feature Extraction Procedure: TSP defines the
flows of each time slot that exceed a defined
occupancy threshold (α) as heavy hitters. It
classifies traffic features within a time slot into two
categories, i.e., Positive Samples and Negative
Samples, depending on whether they are related to
heavy hitters or not.
TSP employs the dpkt library to parse network

traffic and extract flow features, storing them as
DataFrames for each time slot. The feature
extraction process is illustrated in Figure 2.
In Slot 1, Flow C is identified as a heavy hitter,

with its features collected as positive samples,
while features of Flow A are collected as negative
samples. In Slot 2, the features of Flow C continue
to be collected as positive samples, and both Flow
A and Flow B are marked as non-heavy hitters. By
Slot 3, Flow A is upgraded to a heavy hitter, and its
features are collected as positive samples.
C. Data Preprocessing
Before training, achieving a balanced dataset is

necessary. An imbalanced dataset makes the model
biased towards the majority class, which can result
in poor performance on the minority class.
Additionally, this imbalance presents challenges for
training effective models without exceeding the
memory limitations of P4 programmable switches.
As shown in Figure 3, in different slot_size and

occupancy threshold (α), the initial sample
distributions revealed a severe class imbalance,
with an average imbalance ratio of 0.015 (ranging
from 0.0037 to 0.045).
To address this, TSP performs feature filtering by

removing flow features with fewer than 20 packets,
as these flows generally lack sufficient data and
have high information entropy, leading to
misclassification. After filtering, 10% of positive
samples and 90% of negative samples were
removed, reducing the class imbalance to an
average ratio of 0.126 (ranging from 0.033 to
0.264).
Despite this improvement, the data imbalance

persisted, necessitating further balancing using
One-Sided Selection (OSS) and random under-

Fig. 2 Example of slotted-based feature extraction.

Fig. 3 Comparison of Sample Distribution before and after feature filtering.

sampling to create a more balanced training set. As
shown in Algorithm 1, OSS leverages Tomek Links
[19] to eliminate redundant and noisy negative
samples, thereby preserving representative samples
and resulting in a balanced training set. Tomek
Links are pairs of samples, e.g., (x, y), where each
sample has a different class label. If no sample z
exists such that the distance between x and z or y
and z is less than the distance between x and y, then
(x, y) is identified as a Tomek Link. The use of
Tomek Links is crucial in OSS for refining the
training dataset by specifically targeting and
removing borderline or noisy samples. This process
ensures that the training set is balanced and clean,
improving the model’s performance by reducing the
likelihood of misclassifications caused by noisy
data.

http://www.ijctjournal.org


International Journal of Computer Techniques -– Volume 11 Issue 5, 2024

ISSN :2394-2231 http://www.ijctjournal.org Page 18

Algorithm 1 One-Sided Selection

Require: S: original training set,C: positive samples from S and one
randomly selected negative sample

Ensure: T: balanced training set
1: InitializeCwith all positive samples and one negative sample from S
2: for each sample in S do
3: Classify S using 1-NN rule with samples in C
4: Move misclassified samples to C
5: end for
6: while all positive samples are not retained do
7: for each sample in C do

8: Remove negative samples participating in Tomek Links
9: end for
10: end while

D. Prediction Model Design

1) Prediction Model Selection: TSP employs decision
trees as the predictive model due to their
straightforward structure and operational simplicity,
making them suitable for deployment in
programmable switches [20]. Despite addressing
data imbalance in the Data Processing stage, some
imbalance persists, challenging the performance of
decision trees. These models, while versatile, can
overfit in the presence of highly imbalanced data,
where negative samples vastly outnumber positive
ones.
Pruning decision trees can enhance generalization

by eliminating leaves with low-class probability
estimates. However, this technique might
inadvertently remove branches that capture minor
yet critical concepts in imbalanced datasets, thus
not addressing the core issue. In scenarios with rare
positive samples, decision trees often misclassify
mixed sample regions as negative due to the
dominance of negative samples. To mitigate this,
TSP employs cost-sensitive decision trees, which
handle imbalanced data by assigning different
misclassification costs to different classes. In this
context, higher costs are assigned to misclassifying
positive samples, thereby biasing the model to be
more cautious about these critical samples. This
approach helps in improving the classification
performance of the minority class without overly
simplifying the decision tree.
2) Prediction Model Implementation: TSP utilizes the
decision tree classifier with an optimized
Classification and Regression Tree (CART)

algorithm [21]. This method uses Gini impurity
instead of information entropy, reducing
computational overhead by avoiding logarithmic
operations. CART identifies splits that minimize the
Gini impurity for each feature and threshold,
weighted by node sizes, according to the following
loss function Equation (1):

where Si is the number of instances in subset i
and Pi is the impurity of subset i.
Given the NP-complete nature of finding the

optimal tree, CART employs a greedy algorithm
that stops splitting when a predefined maximum
depth (max_depth) is reached or when further splits
do not significantly reduce impurity.
To handle data imbalance, TSP leverages sample

weight and class weight parameters. Sample weight
adjusts the weights of individual samples, while
class weight adjusts the weights of each class.
Using class weight = balanced and the default
sample weight yielded the best predictive
performance by equalizing class influence.
Hyperparameter tuning is performed using

GridSearchCV, which automates the search for
optimal hyperparameter combinations through
exhaustive search and cross-validation, thereby
enhancing model optimization. Additionally, TSP
sets min_samples_leaf to 200 to ensure the
construction of a locally optimal decision tree.
3) Model Regularization: While pruning does not
resolve data imbalance, it is crucial for maintaining
manageable tree sizes in decision tree models. TSP
employs post-pruning to convert certain nodes into
leaves, starting from the bottom of the tree. This
process is validated by comparing accuracy before
and after pruning. Specifically, TSP uses Cost
Complexity Pruning (CCP), controlled by the
parameter ccp_alpha. Higher ccp_alpha values
result in more extensive pruning, whereas lower
values preserve more of the original tree structure.
The steps for CCP involve calculating the ccp_

alpha values for each node from the bottom up,
pruning the tree accordingly, and selecting the
optimal subtree based on cross-validation scores.
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The detailed algorithm for CCP is shown in
Algorithm 2.
To balance model complexity with data plane

constraints, TSP adjusts ccp_alpha, typically
favoring smaller values for practical
implementation. The final predictive model is
evaluated using True Positive Rate (TPR), True
Negative Rate (TNR), and F1-Score, determined by
averaging results from multiple training runs.
After optimizing the decision tree, TSP translates

the model into P4 code using P4C, ensuring
seamless deployment on programmable switches.

E. Data Plane Design

1) Pipeline Overview: The P4 language offers a
robust framework for programming packet
processing functions directly on data plane of
network hardware. TSP, which is a packet
processing application developed using P4, operates
within this framework but faces significant
challenges due to its packet-by-packet processing
limitation. Specifically, TSP can only access
information related to the current packet passing
through the pipeline, making it difficult to predict
features based on other flows simultaneously.
Balancing the accuracy and latency of flow

predictions presents another challenge. The timing

of feature collection is critical: in load-balancing
scenarios, a few false negatives might be tolerable,
prioritizing prediction speed over accuracy.
Conversely, when identifying heavy flows
suspected of denial-of-service (DoS) attacks,
accuracy is paramount to avoid unnecessary alerts
that could overwhelm network operators.
To address these challenges, TSP devised a stage-

sequenced logic execution scheme, suitable for the
constrained resources of hardware switch pipelines
(As shown in Figure 1). Initially, packets are
processed by the Parser, which extracts packet
headers to compute flow features such as TCP flags
and inter-arrival times (IAT). This information
accompanies the packet to subsequent stages. Upon
entering the pipeline (Ingress and Egress), packets
are hashed into their respective flows based on
five-tuple information (source/destination IP
address, source/destination port, protocol number).
At the end of the pipeline, all packets undergo
deparsing before being reconstructed for
transmission.
The P4 programmable switch provides ingress

pipeline timestamps, enabling the calculation of
time-dependent variables (e.g., IAT). All features
are stored in registers and manipulated using basic
P4-supported operations (addition, subtraction,
hashing). For example, if the ACK flag of an
incoming packet is set, the ACK flag counter
increments accordingly. Since P4 does not support
division operation, TSP employs an exponentially
weighted moving average (EWMA) to perform
averaging, defined as Equation (2):

where xt represents the counters at time t, and Et
represents the EWMA at time t. Setting α to 0.5
allows the average calculation to be implemented
using bit-wise operations within the switch.
This approach enables TSP to efficiently manage

the trade-offs between accuracy and latency,
ensuring effective flow prediction within the
constraints of the P4 programmable switch
environment.
2) Slot Module: Given the packet-driven nature of
P4 programmable data plane, TSP can only obtain

Algorithm 2 Optimal Subtree Selection Using CCP Apha
Require: T: complete decision tree, D: dataset, k: number of cross-
validation folds
Ensure: Topt: optimal subtree
1: Initialize lists A (ccp_alpha values), S (subtrees), V (validation
scores)
2: for each node from bottom up do
3: Calculate and store ccp_alpha in A
4: end for
5: for each ccp_alpha in A do
6: Prune T to obtain subtree Ti and add Ti to S
7: end for
8: for each subtree Ti in S do
9: Initialize list F (fold scores)
10: for each fold f in k do
11: Split D into training and validation set: Dtrain, Dval
12: scoref ←Train Ti on Dtrain and evaluate on Dval

13: Add scoref to F
14: end for
15: Calculate and store average score scorei in V
16: end for
17: Identify Topt as subtree in S with maximum score in V
18: return Topt
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the hash value of the current packet’ s flow as it
enters the pipeline. This hash value is used to
predict features collected from the previous slot via
a decision tree. However, this method cannot
predict features for other flows based on the current
packet, which is a significant limitation. To address
this issue, TSP employs two registers to store time
information: next_time_reg and slot_time_reg,
ensuring that each flow in every slot enters the
prediction stage.
The next_time_reg register records the end time

of each flow for the current slot, while the
slot_time_reg maintains the end time of the current
slot, shared among all flows. When the first packet
of a new slot enters the switch, TSP compares the
current packet time (packet_time) with the next
time value from next_time_reg. It then updates the
necessary registers to ensure the correct collection
of flow features.
For example, consider a slot_size of 5 seconds.

When Flow A’s first packet arrives, TSP compares
packet_time with next_time, which is initialized to
the first slot’s end time of 5 seconds. If packet_time
is less than next_time and it is the flow’s first
packet, slot_time is obtained from slot_time_reg,
and next time is updated accordingly.
When the first packet of a new slot arrives, TSP

updates slot time to the new slot’s end time. This
process ensures the correct feature collection for
new flows appearing in the current slot. After
updating the necessary values, TSP inputs the
collected features into the prediction model. The
prediction results then clear the feature registers,
preparing for the next slot’s feature collection.
3) Prediction Module: The prediction module begins
with two essential checks. First, it discards features
if the packet count (packet count) for the current
flow in the previous slot is less than 20, ensuring
data consistency with pre-training standards.
Second, it reads the prediction flag (flag_reg) to
determine if the flow has already been predicted
(flag = 1) or still requires prediction (flag = 0).
The prediction process employs four decision

trees, each predicting the flow status for the
subsequent slot. The results are stored in res_flag,
indicating the number of slots until the flow

becomes a heavy hitter. Specifically, res_flag = 0
signifies that the flow will not become a heavy
hitter in the next four slots.
A critical challenge in online classification is

determining the optimal timing for predictions. TSP
addresses this by fixing the timing to slot intervals,
thereby shifting the challenge to the number of
predictions required for accuracy. Premature
decisions may lack confidence, rendering them
unsuitable for high-accuracy scenarios such as DoS
attack detection. Conversely, delayed predictions
risk service disruption or resource wastage.
To address these issues, TSP offers two models:

ACC and ASAP. The ACC model prioritizes
accuracy, while the ASAP model focuses on rapid
predictions. In the ASAP model, predictions stop
once a flow is identified as a heavy hitter, updating
the flow’s flag to 1. The ACC model employs two
additional registers, cur_flow_reg and heavy_flow_
reg, to ensure accuracy by comparing consecutive
results.
Upon receiving a termination signal (flag = 1),

TSP releases the corresponding flow’s memory in
the programmable data plane, completing the
prediction cycle.
This approach ensures that TSP can manage flow

predictions efficiently within the programmable
data plane, balancing accuracy and speed according
to network requirements.

IV. EVALUATION

A. Experiment Settings
Testbed Setup. In the control plane, TSP utilizes

the dpkt library to extract network traffic features.
To address data imbalance, we apply One-Sided
Selection and Random Under Sampling techniques.
The dataset is split into training (70%) and test
(30%) sets using scikit-learn. A decision tree
classifier is then trained and selected as the
prediction model. In the data plane, we simulate the
network environment using Mininet [22], deploying
TSP on BMv2 [23] and Intel Tofino [24] switches.
The trained model is converted to P4 code for real-
time heavy hitter prediction. For validation, we use
real network datasets from the UNI dataset [25],
which includes packet traces from two university
data centers, UNI1 and UNI2, with UNI1
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(a) α = 2%, slot_size = 2 (b) α = 2%, slot_size = 5 (c) α = 10%, slot_size = 2 (d) α = 10%, slot_size = 5

Fig. 4 Comparison of accuracy for TSP, pHeavy, and APPR at different α% and slot_size.

Fig. 5: Comparison of prediction times for Heavy Hitter Detection and
pHeavy.

Fig. 6: Relationship between number of predictions and TPR for TSP.

predominantly consisting of TCP traffic and UNI2
consisting of UDP traffic.
Parameter Setting. TSP defines heavy hitter

detection with three variables: heavy hitter
occupancy (α), time slot size ( slot_size), and the
index of slot (slot_index). The slot_size determines
the duration for heavy hitter prediction. Larger
slot_size allows for more comprehensive flow
information collection but incurs higher resource
overhead. We conducted experiments with
slot_size values of 2 seconds and 5 seconds. The
heavy hitter threshold (α) affects both the number
of detected heavy hitters and prediction accuracy.
We tested with α values of 2% and 10% to cater to
different network environments. TSP predicts
combinations of slot_size and α from 1 to 4 slot_
index.
B. Comparison of Accuracy

We evaluate the prediction accuracy of TSP
against pHeavy and APPR using three metrics: TPR,
TNR, and F1-Score, on the UNI1 dataset. The
experiments are conducted at two occupancy rates
(α = 2% and α = 10%), with TSP evaluated using
two slot_size values (2s and 5s) and four slot_index
values under the same conditions.
Figure 4 shows that all three algorithms exhibit

high TPR and TNR, indicating effective detection
of both heavy hitters and non-heavy hitters.
However, the F1-Score varies across the methods
and conditions.
At α = 2% (Figures 4a and 4b), TSP achieves a

superior F1-Score compared to pHeavy and APPR.
This is due to TSP’s ability to leverage a higher
number of heavy hitters per slot, which enhances
model training and prediction performance by
providing more balanced data.
At α = 10% (Figures 4c and 4d), pHeavy and

APPR demonstrate higher F1 scores. This
improvement is attributed to pHeavy’s flow
memory management, which filters out flows
meeting certain termination conditions, and APPR’s
extensive feature set derived from application layer
protocol interactions. However, APPR’s complexity
makes it less suitable for real-time data plane
implementation. The lower F1-Score for TSP is
primarily due to data imbalance caused by fewer
heavy hitters per slot, which hampers the training
process and leads to incorrect classification of
negative samples. Although TSP maintains a high
TPR, its TNR is lower than that of pHeavy and
APPR, highlighting the challenge of correctly
identifying non-heavy hitters under higher
occupancy rates.
The decline in F1-Score for pHeavy and APPR as

α decreases from 10% to 2% is notable. In contrast,
TSP’s F1-Score increases due to the higher number
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of heavy hitters per slot, which helps mitigate data
imbalance and leads to more accurate predictions.
C. Comparison of Prediction Time
We compare the prediction times of TSP, pHeavy,

and Heavy Hitter Detection within programmable
switches. Heavy Hitter Detection maintains a
counter for each flow and sets thresholds equivalent
to the position of the last decision tree in pHeavy
(i.e., the 20th decision tree).
TSP predicts heavy hitters based on time slots,

which constrains changes within specific slots.
Consequently, a direct comparison of prediction
times between TSP and pHeavy is not feasible.
However, TSP’s slot_size indirectly represents
prediction time, allowing for a comparison based on
the number of slots required for prediction.
Heavy Hitter and pHeavy derive results through

initial packet analysis, making them suitable for
temporal comparisons. The methods Heavy Hitter
and pHeavy derive results through initial packet
analysis, making them suitable for temporal
comparisons. The heavy hitter prediction time is
defined as the interval from receiving the first
packet of a flow to predicting it as a heavy hitter.
As shown in Figure 5, pHeavy predicts 90% of
flows with an average prediction time of 2.6
seconds, while Heavy Hitter averages 7.9 seconds.
TSP predicts at least 80% of large network flows on
the first slot.
TSP’s prediction time is inherently tied to its

slot_size configuration. This allows TSP to confine
predictions within set time frames, but it also means
that the prediction time is quantized in units of
slot_size. Consequently, the number of predictions
correlates with prediction time. Figure 6 illustrates
the relationship between the number of predictions
and the TPR for TSP. The results show that 80% of
heavy hitters are accurately predicted in the first
prediction cycle, achieving up to 98% accuracy
after three prediction cycles.
The significant differences in prediction times

across Heavy Hitter Detection, pHeavy, and TSP
can be attributed to their underlying mechanisms.
pHeavy leverages initial packet inspection for rapid
prediction, resulting in quick detection times but
potentially less accuracy in highly dynamic network
environments. Heavy Hitter Detection, while

thorough, incurs longer prediction times due to its
comprehensive evaluation, enhancing accuracy but
may be impractical for real-time applications where
swift decision-making is crucial.
TSP’s slot-based approach ensures regular

updates, making it suitable for environments where
timely but not instantaneous predictions are
required. The iterative refinement in TSP’s
predictions, shown by the increase in TPR from
80% in the first prediction to 98% by the third
prediction, highlights its strength in leveraging
accumulated data over successive intervals.

TABLE III
Hardware resources consumption of TSP on Intel Tofino.

Resource Total / Average
ALU 13 Unit (29.55%)

Hash Bit 584 Bit (12.76%)
Hash Dist Unit 11 Unit (16.67%)

SRAM 160 KB (1.25%)
TCAM 3 Mtrits (58.33%)

Logical TableID 10 Unit (6.25%)
PHV 1156 Bit (18.82%)

D. P4 Hardware Switch Experiment
We have implemented TSP on P4 programmable

switches equipped with the Intel Tofino ASIC. Both
Intel Tofino switches and the BMv2 pipeline support
the P4 language, yielding comparable experimental
results. However, unlike software simulations such
as BMv2, deploying TSP on Intel Tofino
necessitates careful consideration of hardware
resource consumption, as shown in Table III. To
schedule programs with dependency chains within
the limited pipeline stages efficiently, TSP employs
MAUs to consolidate chained operations and
implement multi-branching decision trees. This
strategy results in high TCAM resource usage
(Average 58.33% per stage), whereas SRAM
resources are relatively conserved (Average 1.25%
per stage), as only the most recent stream
information is stored.

V. CONCLUSIONS
In this paper, we introduced TSP, a system

designed to detect heavy hitters in network traffic
by leveraging both the Control Plane and the Data
Plane. The Control Plane utilizes machine learning
techniques to train a predictive model, addressing

http://www.ijctjournal.org
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data imbalance and optimizing for accuracy. This
model is then translated into P4 code and deployed
on Mininet with BMv2 switches and Intel Tofino
switches for real-time traffic analysis. Our
evaluation, using real-world datasets, demonstrates
that TSP achieves high prediction accuracy and
efficiency, outperforming existing methods such as
pHeavy and APPR in certain scenarios. The unique
time slot-based approach of TSP enables it to
maintain a balance between prediction accuracy and
latency, making it adaptable to various dynamic
network environments. Future work will explore
further optimization of feature extraction and model
training processes to enhance the robustness and
scalability of TSP.
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