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Abstract: 
 In real world applications, most of the optimization problems involve more than one objective to 

be optimized. The objectives in most of engineering problems are often conflicting, i.e., maximize 

performance, minimize cost, maximize reliability, etc. In the case, one extreme solution would not satisfy 

both objective functions and the optimal solution of one objective will not necessary be the best solution 

for other objective(s). Therefore different solutions will produce trade-offs between different objectives 

and a set of solutions is required to represent the optimal solutions of all objectives. Multi-objective 

formulations are realistic models for many complex engineering optimization problems. Customized 

genetic algorithms have been demonstrated to be particularly effective to determine excellent solutions to 

these problems. A reasonable solution to a multi-objective problem is to investigate a set of solutions, each 

of which satisfies the objectives at an acceptable level without being dominated by any other solution. In 

this paper, an overview is presented describing various multi objective genetic algorithms developed to 

handle different problems with multiple objectives. 
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I. INTRODUCTION 

While most real world problems require the 

simultaneous optimization of multiple, often 

competing, criteria (or objectives), the solution to 

such problems is usually computed by combining 

them into a single criterion to be optimized, 

according to some utility function. In many cases, 

however, the utility function is not well known 

prior to the optimization process. The whole 

problem should then be treated as a multiobjective 

problem with non-commensurable objectives. In the 

recent past, multi-objective optimization techniques 

have been successfully utilized to solve the 

problems having multiple conflicting objective in 

spite of their computational expenses. The 

availability of fast machines and computational 

models has boosted the use of these techniques to 

solve many problems [1]. 

There are two general approaches to multiple-

objective optimization. One is to combine the 

individual objective functions into a single 

composite function. Determination of a single 

objective is possible with methods such as utility 

theory, weighted sum method, etc., but the problem 

lies in the correct selection of the weights or utility 

functions to characterize the decision-makers 

preferences. In practice, it can be very difficult to 

precisely and accurately select these weights, even 

for someone very familiar with the problem domain. 

Unfortunately, small perturbations in the weights 

can lead to very different solutions. For this reason 

and others, decision-makers often prefer a set of 

promising solutions given the multiple objectives. 

The second general approach is to determine an 

entire Pareto optimal solution set or a representative 

subset. A Pareto optimal set is a set of solutions that 

are non-dominated with respect to each other. 

While moving from one Pareto solution to another, 

there is always a certain amount of sacrifice in one 

objective to achieve a certain amount of gain in the 

other. Pareto optimal solution sets are often 
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preferred to single solutions because they can be 

practical when considering real-life problems, since 

the final solution of the decision maker is always a 

trade-off between crucial parameters. Pareto 

optimal sets can be of varied sizes, but the size of 

the Pareto set increases with the increase in the 

number of objectives. 

 

II.MULTI-OBJECTIVE OPTIMIZATION 

FORMULATION 
 A multi-objective decision problem is defined as 

follows: Given an n-dimensional decision variable 

vector x={x1,…,xn} in the solution space X, find a 

vector x* that minimizes a given set of K objective 

functions z(x* )={z1(x* ),…,zK(x* )}. The solution 

space X is generally restricted by a series of 

constraints, such as gj(x*)=bj for j = 1, …, m, and 

bounds on the decision variables. In many real-life 

problems, objectives under consideration conflict 

with each other. Hence, optimizing x with respect 

to a single objective often results in unacceptable 

results with respect to the other objectives. 

Therefore, a perfect multi-objective solution that 

simultaneously optimizes each objective function is 

almost impossible. A reasonable solution to a multi 

objective problem is to investigate a set of solutions, 

each of which satisfies the objectives at an 

acceptable level without being dominated by any 

other solution. If all objective functions are for 

minimization, a feasible solution x is said to 

dominate another feasible solution y ( x y ; ), if and 

only if, zi(x) ≤ zi(y) for i=1, …, K and zj(x) < zj(y) 

for least one objective function j. A solution is said 

to be Pareto optimal if it is not dominated by any 

other solution in the solution space. A Pareto 

optimal solution cannot be improved with respect to 

any objective without worsening at least one other 

objective. The set of all feasible 3 non-dominated 

solutions in X is referred to as the Pareto optimal 

set, and for a given Pareto optimal set, the 

corresponding objective function values in the 

objective space is called the Pareto front. For many 

problems, the number of Pareto optimal solutions is 

enormous (maybe infinite).  

 

III. GENETIC ALGORITHMS 

The concept of genetic algorithms (GA) was 

developed by Holland and his colleagues in the 

1960s and 1970s [2]. GA is inspired by the 

evolutionist theory explaining the origin of species. 

In nature, weak and unfit species within their 

environment are faced with extinction by natural 

selection. The strong ones have greater opportunity 

to pass their genes to future generations via 

reproduction. In the long run, species carrying the 

correct combination in their genes become 

dominant in their population. Sometimes, during 

the slow process of evolution, random changes may 

occur in genes. If these changes provide additional 

advantages in the challenge for survival, new 

species evolve from the old ones. Unsuccessful 

changes are eliminated by natural selection. 

In GA terminology, a solution vector x∈X is called 

an individual or a chromosome.Chromosomes are 

made of discrete units called genes. Each gene 

controls one or more features of the chromosome. 

In the original implementation of GA by Holland, 

genes are assumed to be binary numbers. In later 

implementations, more varied gene types have been 

introduced. Normally, a chromosome corresponds 

to a unique solution x in the solution space. This 

requires a mapping mechanism between the 

solution space and the chromosomes. This mapping 

is called an encoding. In fact, GA works on the 

encoding of a problem, not on the problem itself. 

GA operates with a collection of chromosomes, 

called a population. The population is normally 

randomly initialized. As the search evolves, the 

population includes fitter and fitter solutions, and 

eventually it converges, meaning that it is 

dominated by a single solution. Holland also 

presented a proof of convergence (the schema 

theorem) to the global optimum where 

chromosomes are binary vectors. 

GA uses two operators to generate new solutions 

from existing ones: crossover andmutation. The 

crossover operator is the most important operator of 

GA. In crossover, generally two chromosomes, 

called parents, are combined together to form new  

chromosomes, called offspring. The parents are 

selected among existing chromosomes in the 

population with preference towards fitness so that 

offspring is expected to inherit good genes which 

make the parents fitter. By iteratively applying the 

crossover operator, genes of good chromosomes are 

expected to appear more frequently in the 
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population, eventually leading to convergence to an 

overall good solution. The mutation operator 

introduces random changes into characteristics of 

chromosomes. Mutation is generally applied at the 

gene level. In typical GA implementations, the 

mutation rate (probability of changing the 

properties of a gene) is very small, typically less 

than 1%. Therefore, the new chromosome produced 

by mutation will not be very different from the 

original one. Mutation plays a critical role in GA. 

As discussed earlier, crossover leads the population 

to converge by making the chromosomes in the 

population alike. Mutation reintroduces genetic 

diversity back into the population and assists the 

search escape from local optima. 

Reproduction involves selection of chromosomes 

for the next generation. In the most general case, 

the fitness of an individual determines the 

probability of its survival for the next generation. 

There are different selection procedures in GA 

depending on how the fitness values are used. 

Proportional selection, ranking, and tournament 

selection are the most popular selection procedures. 

The procedure of a generic GA is given as follows: 

Step 1.  

Set t =1. Randomly generate N solutions to form the 

first population, P1. Evaluate 

the fitness of solutions in P1. 

Step 2.  

Crossover: Generate an offspring population Qt  as 

follows. 

2.1. Choose two solutions x and y from Pt  based on 

the fitness values. 

2.2. Using a crossover operator, generate offspring 

and add them to Qt. 

Step 3. 

Mutation: Mutate each solution x∈Qt  with a 

predefined mutation rate. 

Step 4.  

Fitness Assignment: Evaluate and assign a fitness 

value to each solution x∈Qt based its objective 

function value and infeasibility. 

Step 5.  

Selection: Select N solutions from Qt  based on 

their fitness and assigned them 

Pt+1. 

Step 6.  

If the stopping criterion is satisfied, terminate the 

search and return the current 

population, else, set t=t+1 go to Step 2. 

 

IV. MULTI-OBJECTIVE GENETIC 

ALGORITHMS 
Being a population based approach, GA are well 

suited to solve multi-objective optimization 

problems. A generic single-objective GA can be 

easily modified to find a set of multiple non-

dominated solutions in a single run. The ability of 

GA to simultaneously search different regions of a 

solution space makes it possible to find a diverse set 

of solutions for difficult problems with non-convex, 

discontinuous, and multi-modal solutions spaces. 

The crossover operator of GA may exploit 

structures of good solutions with respect to different 

objectives to create new non-dominated solutions in 

unexplored parts of the Pareto front. In addition, 

most multi-objective GA do not require the user to 

prioritize, scale, or weigh objectives. Therefore, GA 

has been the most popular heuristic approach to 

multi-objective design and optimization problems. 

Jones et al. [3] reported that 90% of the approaches 

to multiobjective optimization aimed to 

approximate the true Pareto front for the underlying 

problem. A majority of these used a meta-heuristic 

technique, and 70% of all meta-heuristics 

approaches were based on evolutionary approaches. 

The first multi-objective GA, called Vector 

Evaluated Genetic Algorithms (or VEGA), was 

proposed by Schaffer [4]. Afterward, several major 

multi-objective evolutionary algorithms were 

developed such as Multi-objective Genetic 

Algorithm (MOGA), Niched Pareto 6 Genetic 

Algorithm, Random Weighted Genetic Algorithm 

(RWGA), Nondominated Sorting Genetic 

Algorithm (NSGA), Strength Pareto Evolutionary 

Algorithm (SPEA), Pareto-Archived Evolution 

Strategy (PAES), Fast Non-dominated Sorting 

Genetic Algorithm (NSGA-II), Multi-objective 

Evolutionary Algorithm (MEA), Rank-Density 

Based Genetic Algorithm (RDGA). It is to be noted 

that although there are many variations of 

multiobjective GA in the literature, these cited GA 

are well-known and credible algorithms that have 

been used in many applications and their 

performances were tested in several comparative 
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studies. In the next section details of important 

multi-objective genetic algorithms are discussed. 

 

V. REVIEW OF ALGORITHMS PROPOSED 

IN LITERATURE 
Various MOGAs proposed in the literature are 

described in subsequent subsections. 

 
A. VIGA 

 An important implementation of MOGA is 

called Vector Evaluated Genetic Algorithm 

(VEGA), incorporates a modified selection process 

to cope with multiple evaluation criteria [5]. In this 

paper a modified selection procedure to handle 

multiple objectives. He suggested dividing the 

whole population into groups equal to a number of 

objectives. Selection procedure in each group is 

based on a single objective. Mating limits help 

limited combinations of individual solutions in the 

same group. Pairwise comparison helps to 

recognize the dominated solutions. After a few 

generations, a set of non-dominated solutions are 

recognized to represent the Pareto front [6]. But, the 

major difficulty with this algorithm is that it 

prevents to determine the location of the Pareto 

front. Another problem of the selection procedure, 

the individual solutions that are better in one 

objective are given preference over the other 

individual solutions. This leads the algorithm to 

converge to individually best solutions only.  

 
B. MOGA 

 In 1993, another implementation of MOGA was 

proposed which employed the concept of niching 

and dominance along with the rank based fitness 

assignment. The non-dominated solutions are 

categorized into groups. The individual solutions 

are assigned same ranks in each group. The other 

groups of the solutions which are dominated by the 

current group are assigned next ranks. To maintain 

the diversity among the groups, the author proposed 

to use dynamically updated sharing. But, the major 

problem of this method is slow convergence that 

prevent from finding the optimum Pareto front [6]. 

 
C. NSGA and Its Variants 

Non dominated Sorting Genetic Algorithm 

(NSGA) is based on the concept of dominance and 

sharing and it is quite similar to multi-objective 

genetic algorithms [7]. The NSGA is based on 

several layers of classification of individuals as 

suggested by [8]. Before selection is performed, the 

population is ranked on the basis of non-domination: 

all non-dominated individuals are classified into 

one category (with a dummy fitness value, which is 

proportional to the population size, to provide an 

equal reproductive potential for these individuals). 

To maintain the diversity of the population, these 

classified individuals are shared with their dummy 

fitness values. Then this group of classified 

individuals is ignored, and another layer of non-

dominated individuals is considered. The process 

continues until all individuals in the population are 

classified. Since individuals in the first front have 

the maximum fitness value, they always get more 

copies than the rest of the population. The diversity 

among the individual solutions is maintained by 

using the sharing concept. How- ever, NSGA does 

not involve dynamic updating of any niche that 

makes it faster than MOGA. The algorithm of the 

NSGA is not very efficient, because Pareto ranking 

has to be repeated again. Evidently, it is possible to 

achieve the same goal in a more efficient way.  

Niched Pareto Genetic Algorithm (NPGA) is based 

on the concept of dominance and sharing. NPGA 

differs from earlier approaches in the selection of 

individual solutions [9]. Here, the selection is based 

on a modified tournament selection than the 

proportional selection (as in NSGA). The basic idea 

of the algorithm is quite clever: two individuals are 

randomly chosen and compared against a subset of 

the entire population (typically, around 10% of the 

population). If one of them is dominated (by the 

individuals randomly chosen from the population) 

and the other is not, the the non- dominated 

individual wins. All the other situations are 

considered as a tie (i.e., both competitors are either 

dominated or non-dominated). When there is a tie, 

the result of the tournament is decided through 

fitness sharing.  

NSGA- II is fast, elitist algorithm proposed by 

[10] and it is a generational algorithm that works 

upon the concept upon dominance. Instead of 

sharing, NSGAII uses the crowding distance to 

maintain the diversity among the individual 

solutions. Here, the author proposed to use 
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tournament selection strategy for selection of 

individual solutions. In this algorithm, to sort a 

population of as- signed size according to the level 

of nondomination, each solution must be compared 

with every other solution in the population to find if 

it is dominated. Solutions of the first non-

dominated front are stored in the first Pareto front, 

solutions of the second front on the second Pareto 

front and so on. The new population is constituted 

by solutions on the first Pareto front, if they are less 

than the initial population size: solutions from the 

next front are taken according to their ranks. In the 

NSGA-II, for each solution one has to determine 

how many solutions dominate it and the set of 

solutions to which it dominates. The NSGA-II 

estimates the density of solutions surrounding a 

particular solution in the population by computing 

the average distance of two points on either side of 

this point along each of the objectives of the 

problem. This value is the so-called crowding 

distance. During selection, the NSGA-II uses a 

crowded-comparison operator which takes into 

consideration both the non-domination rank of  an 

individual in the population and its crowding 

distance (i.e., non-dominated solutions are preferred 

over dominated solutions, but between two 

solutions with the same non-domination rank, the 

one that resides in the less crowded region is 

preferred). The NSGA-II does not use an external 

memory as the other MOEAs previously discussed. 

Instead, the elitist mechanism of the NSGA-II 

consists of combining the best parents with the best 

offspring obtained (i.e. non-dominated solutions are 

preferred over dominated solutions, but between 

two solutions with the same non-domination rank, 

the one that resides in the less crowded region is 

preferred). The NSGA-II does not use an external 

memory as the other MOEAs previously discussed. 

Instead, the elitist mechanism of the NSGA-II 

consists of combining the best parents with the best 

offspring obtained (i.e. a (µ + λ) selection). Due to 

its clever mechanisms, the NSGA-II is much more 

efficient (computationally speaking) than its 

predecessor, and its performance is so good, that it 

has become very popular in the last few years, 

becoming a landmark against which other multi-

objective evolutionary algorithms have to be 

compared.  

 
D. SPEA and Its Variants  

Several researches were carried to improve the 

performance of VEGA, NPGA and NSGA. One 

such algorithm was proposed by [11] called the 

Strength Pareto Evolutionary Algorithm (SPEA). 

SPEA is an elitist MOGA where elitism helps to 

improve its convergence properties. Here, they 

proposed to maintain an archive of non-dominated 

solutions from the beginning of the algorithm. The 

archive is external to the main population, and it 

takes part in fitness computation. With the use of 

the archive, its size may increase very large so its 

pruning may be done to keep it in limits. Limited 

archive size helps in the selection of individual 

solutions. SPEA uses an archive containing non-

dominated solutions previously found (the so-called 

external non-dominated set). At each generation, 

non- dominated individuals are copied to the 

external non-dominated set. For each individual in 

this external set, a strength value is computed. This 

strength is similar to the ranking value of MOGA 

[12], since it is proportional to the number of 

solutions to which a certain individual dominates. 

In SPEA, the fitness of each member of the current 

population is computed according to the strengths 

of all external non- dominated solutions that 

dominate it. The fitness assignment process of 

SPEA considers both close-ness to the true Pareto 

front and even distribution of solutions at the same 

time. Thus, instead of using Niches based on 

distance, Pareto dominance is used to ensure that 

the solutions are properly distributed along the 

Pareto front. Although this approach does not 

require a niche radius, its effectiveness relies on the 

size of the external non-dominated set. Since, the 

external non-dominated set participates in the 

selection process of SPEA, if its size grows too 

large, it might reduce the selection pressure, thus 

slowing down the search. Because of this, the 

authors decided to adopt a technique that prunes the 

contents of the external nondominated set so that its 

size remains below a certain threshold.  

SPEA2 is an improved method for pruning the size 

of the archive that retain the boundary solutions in 

the archive. SPEA2 involves a fine grained fitness 

function based number of individual solutions that 

dominate a current solution and how many it 
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dominates. Fitness function also includes density 

information based on a k-NN algorithm. SPEA2 is 

found to be superior in performance than NSGA-II, 

especially in high dimensional search spaces [13]. 

SPEA2 has three main differences with respect to 

its predecessor. 

 1) It incorporates a fine-grained fitness assignment 

strategy which takes into account for each 

individual the number of individuals that dominate 

it and the number of individuals by which it is 

dominated 

 2) It uses a nearest neighbour density estimation 

technique which guides the search more efficiently. 

 3) It has an enhanced archive truncation method 

that guarantees the preservation of boundary 

solutions.  

 
E. PAES 

Pareto Archived Evolutionary Strategy (PAES) 

algorithm was proposed by [14]. It is a simple 

multi-objective evolutionary algorithm using a 

single parent- single child strategy. In this strategy, 

binary strings and bitwise mutation are used to 

create children in replacement of real parameters. 

PAES algorithm consists of a (1 + 1) Evolution 

strategy (i.e., a single parent that generates a single 

offspring) in combination with a historical archive 

that records the non-dominated solutions previously 

found [15]. This archive is used as a reference set 

against which each mutated individual is being 

compared. Such a historical archive is the elitist 

mechanism adopted in PAES. However, an 

interesting aspect of this algorithm is the procedure 

used to maintain diversity which consists of a 

crowding procedure that divides the objective space 

in a recursive manner. Each solution is placed in a 

certain grid location based on the values of its 

objectives (which are used as its coordinates or 

geographical location). A map of such a grid is 

maintained, indicating the number of solutions that 

reside in each grid location. Since the procedure is 

adaptive, no extra parameters are required (except 

for the number of divisions of the objective space).  

 
F. PESA and Its Variants  

Pareto Envelope based Selection Algorithm 

(PESA) was proposed by [16] which uses a small 

internal population and a large external population. 

The diversity is maintained by borrowing the 

concept of the hyper grid division of the phenotype 

space from PAES. But, the selection process is per- 

formed by the crowding distance method. In PESA, 

the external population plays an important role as it 

is considered to determine selection as well as to 

maintain diversity among the solutions. 

The PESA is further revised to a new version called 

PESA-II [17]. The PESA-II uses region based 

selection. In the region based selection, the unit of 

selection is hyper box rather than an individual. 

Further, an individual is selected randomly from the 

hyperbox. The main objective of a PESA set of 

algorithms is to reduce the computational overhead 

associated with other representative methods. 

 
G. AMGA and ItsVariants 

 In Micro Genetic Algorithm (MGA) was 

originally proposed by [18]. It is a GA with a small 

population and reinitialization process. The 

working of the MGA involves the generation of 

random population, which gets loaded into memory 

in two different portions named replaceable and 

non-replaceable portion. The contents of 

replaceable portion get changed after each cycle of 

MGA whereas the contents of non-replaceable 

portion never changes during execution of the 

algorithm. The population of MGA is randomly 

taken as a mixture of individuals from both the 

portions. During each iteration, the algorithm 

experiences genetic operators. At the end of each 

iteration, two non-dominated individuals from final 

population are selected to compare with contents of 

the external memory. In this way, all dominated 

solutions from the external memory are removed. 

The MGA uses three forms of elitism: 

 1) It retains non-dominated solutions found within 

the internal iteration of the algorithm. 

 2) It uses a replaceable portion of the memory 

whose contents are partly restored at certain 

intervals.  

3) It exchanges the population of the algorithm by 

nominal solutions created 

The Archive based Micro Genetic Algorithm 

(AMGA) is a constrained multi-objective 

evolutionary optimization algorithm [19]. It is a 

generational genetic algorithm since during a 

particular iteration (generation), only solutions 



International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016 

ISSN: 2394-2231                                        http://www.ijctjournal.org Page 215 

created before that iteration takes part in the 

selection process. AMGA uses genetic variation 

operators such as crossover and mutation to create 

new solutions. For the purpose of selection, AMGA 

uses a two tier fitness assignment mechanism; the 

primary fitness is the rank which is based on the 

domination level and the secondary fitness is based 

on the diversity of the solutions in the entire 

population. This is in contrast to NSGA-II, where 

diversity is computed only among the solutions 

belonging to the same rank. The AMGA generates a 

very small number of new solutions at each 

iteration, and can be classified as a micro- GA. 

Generation of a very small number of solutions at 

every iteration helps in reducing the number of 

function evaluations by minimizing exploration of 

less promising search regions and directions. The 

AMGA maintains an external archive of good 

solutions obtained. Use of the external archive 

helps AMGA in reporting a large number of non- 

dominated solutions at the end of the simulation. It 

also provides information about its search history 

which is exploited by the algorithm during the 

selection operation. In each iteration, the parent 

population is created from the archive and the 

binary tournament selection is performed on the 

parent population to create the mating population. 

The off- spring population is created from the 

mating pool, and is used to update the archive. The 

size of the archive determines the computational 

complexity of the AMGA. The design of the 

algorithm is independent of the encoding of the 

variables and thus the proposed algorithm can work 

with almost any kind of encoding (so long as 

suitable genetic variation operators are provided to 

the algorithm). The algorithm uses the concept of 

Pareto ranking borrowed from NSGA-II and 

includes improved diversity computation and 

preservation techniques. The diversity measure is 

based on efficient nearest neighbor search and 

modified crowding distance formulation. 

 An improved Archive-based Micro Genetic 

Algorithm (referred to as AMGA2) for constrained 

multiobjective optimization is proposed in [20]. 

AMGA2 is designed to obtain fast and reliable 

convergence on a wide variety of optimization 

problems. AMGA2 benefits from the existing 

literature in that it borrows and improves upon 

several concepts from the existing multi-objective 

optimization algorithms. Improvements and 

modifications to the existing diversity assessment 

techniques and genetic variation operators are also 

proposed. AMGA2 employs a new kind of selection 

strategy that attempts to reduce the probability of 

exploring undesirable search regions. The proposed 

AMGA2 is a steady-state genetic algorithm that 

maintains an external archive of the best and 

diverse solutions and a very small working 

population. AMGA2 has been designed to facilitate 

the decoupling of the working population, the 

external archive, and the number of solutions 

desired as the outcome of the optimization process. 

Comprehensive benchmarks and comparison of 

AMGA2 with the current state-of-the-art multi-

objective optimization algorithms demonstrate its 

improved search capability  

 

VI. CONCLUSIONS 
The MOGA has been successfully employed to 

solve the various problems of many domains having 

multiple conflictingobjectives. This paperpresented 

the background details of multi-objective genetic 

algorithms and highlighted the importance of 

NSGA and other algorithms proposed in the 

literature.  

 

ACKNOWLEDGMENT 

The Author is thankful to Punjab Technical 

University, Jalandhar for the support and 

motivation for research. 

 

REFERENCES 
[1] Tiwari, S.: Development and integration of 

geometric and optimization algorithms for packing 

and layout design. Ph.D. thesis, Clemson University 

2009. 

[2] Holland, J.H., Adaptation in Natural and 

Artificial Systems, University of Michigan Press, 

Ann Arbor, 1975. 

[3] Jones, D.F., Mirrazavi, S.K., and Tamiz, M., 

Multiobjective meta-heuristics: an overview of the 

current state-of-the-art, European Journal of 

Operational Research 137(1), pp. 1-9, 2009. 

[4] Schaffer, J.D. Multiple Objective optimization 

with vector evaluated genetic 



International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016 

ISSN: 2394-2231                                        http://www.ijctjournal.org Page 216 

algorithms.International Conference on Genetic 

Algorithm and their applications, 1985. 

[5] Ahmadian, K., Golestani, A., Mozayani, N., 

Kabiri, P., Anew multi-objective evolutionary 

approach for creatingensemble of classifiers. In: 

Proc. of IEEE InternationalConference on Systems, 

Man and Cybernetics (ISIC), pp.1031–1036. IEEE, 

2007. 

[6] Engen, V.: Machine learning for network based 

intrusiondetection: an investigation into 

discrepancies in findingswith the kdd cup’99 data 

set and multi-objective evolutionof neural network 

classifier ensembles from imbalanceddata. Ph.D. 

thesis, Bournemouth University 2010. 

[7] Srinivas, N., Deb, K.: Muiltiobjective 

optimization usingnondominated sorting in genetic 

algorithms. Evolution- ary computation 2(3), pp. 

221–248 ,1994. 

[8] Goldberg, D., Holland, J.: Genetic algorithms 

and machinelearning. Machine Learning 3(2), pp. 

95–99, 1988. 

[9] Horn, J., Nafpliotis, N., Goldberg, D.: A niched 

paretogenetic algorithm for multiobjective 

optimization. In: Proc.of the First IEEE Conference 

on Evolutionary Computation, pp. 82–87. IEEE 

1994. 

[10] Deb, K., Agrawal, S., Pratap, A., Meyarivan, 

T.: A fastelitist non-dominated sorting genetic 

algorithm for multiobjectiveoptimization: Nsga-ii. 

Lecture notes in computer science 1917, pp. 849–

858 2000. 

[11] Zitzler, E., Deb, K., Thiele, L.: Comparison of 

multiobjectiveevolutionary algorithms: Empirical 

results. Evolutionary computation 8(2), pp. 173–

195 2000. 

[12] Fonseca, C., Fleming, P., et al.: Genetic 

algorithms formultiobjective optimization: 

Formulation, discussion andgeneralization. In: Proc. 

of the fifth international conferenceon genetic 

algorithms, vol. 1, p. 416. San Mateo, California 

1993. 

[13] Ziztler, E., Laumanns, M., Thiele, L.: Spea2: 

Improvingthe strength pareto evolutionary 

algorithm for multiobjectiveoptimization. 

Evolutionary Methods for Design,Optimization, 

and Control pp. 95–100 (2002) 

[14] Knowles, J., Corne, D.: The pareto archived 

evolutionstrategy: A new baseline algorithm for 

pareto multiobjectiveoptimisation. In: Proc. of the 

1999 Congress onEvolutionary Computation (CEC), 

vol. 1. IEEE , 1999. 

[15] Coello Coello, C.: Evolutionary multi-

objective optimization:a historical view of the field. 

Computational IntelligenceMagazine, IEEE 1(1), 

pp. 28–36, 2006. 

 [16] Corne, D., Knowles, J., Oates, M.: The pareto 

envelopebasedselection algorithm for 

multiobjective optimization.In: Proc. of Parallel 

Problem Solving from NaturePPSN VI, pp. 839–

848. Springer 2000. 

[17] Corne, D., Jerram, N., Knowles, J., Oates, M., 

et al.:Pesa-ii: Region-based selection in 

evolutionary multiobjectiveoptimization. In: Proc. 

of the Genetic and EvolutionaryComputation 

Conference (GECCO2001). Cite- seer, 2001. 

[18] Coello, C.C., Toscano, P.G.: A micro-genetic 

algorithm formultiobjective optimization. In: Proc. 

of Evolution- aryMulti-Criterion Optimization, pp. 

126–140. Springer, 2001. 

[19] Tiwari, S., Koch, P., Fadel, G., Deb, K.: Amga: 

anarchive-based micro genetic algorithm for multi-

objectiveoptimization. In: Proc. of Genetic and 

EvolutionaryComputation conference (GECCO-

2008), Atlanta, USA, pp.729–736, 2008. 

[20] Tiwari, S., Fadel, G., Deb, K.: Amga2: 

improving the performanceof the archive-based 

micro-genetic algorithm formulti-objective 

optimization. Engineering Optimization43(4), pp. 

377–401, 2011. 

 

 

 

 

 


