
International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 209

A Comprehensive Review on Multi-Objective Optimization Using

Genetic Algorithms
Amarbir Singh*

*(Department of Computer Science, Guru Nanak DevUniversity, Amritsar)

--************************----------------------------------

Abstract:
 In real world applications, most of the optimization problems involve more than one objective to

be optimized. The objectives in most of engineering problems are often conflicting, i.e., maximize

performance, minimize cost, maximize reliability, etc. In the case, one extreme solution would not satisfy

both objective functions and the optimal solution of one objective will not necessary be the best solution

for other objective(s). Therefore different solutions will produce trade-offs between different objectives

and a set of solutions is required to represent the optimal solutions of all objectives. Multi-objective

formulations are realistic models for many complex engineering optimization problems. Customized

genetic algorithms have been demonstrated to be particularly effective to determine excellent solutions to

these problems. A reasonable solution to a multi-objective problem is to investigate a set of solutions, each

of which satisfies the objectives at an acceptable level without being dominated by any other solution. In

this paper, an overview is presented describing various multi objective genetic algorithms developed to

handle different problems with multiple objectives.

Keywords —Genetic Algorithms, Elitist Algorithm, Multi-Objective Optimization, Mutation

--************************----------------------------------

I. INTRODUCTION

While most real world problems require the

simultaneous optimization of multiple, often

competing, criteria (or objectives), the solution to

such problems is usually computed by combining

them into a single criterion to be optimized,

according to some utility function. In many cases,

however, the utility function is not well known

prior to the optimization process. The whole

problem should then be treated as a multiobjective

problem with non-commensurable objectives. In the

recent past, multi-objective optimization techniques

have been successfully utilized to solve the

problems having multiple conflicting objective in

spite of their computational expenses. The

availability of fast machines and computational

models has boosted the use of these techniques to

solve many problems [1].

There are two general approaches to multiple-

objective optimization. One is to combine the

individual objective functions into a single

composite function. Determination of a single

objective is possible with methods such as utility

theory, weighted sum method, etc., but the problem

lies in the correct selection of the weights or utility

functions to characterize the decision-makers

preferences. In practice, it can be very difficult to

precisely and accurately select these weights, even

for someone very familiar with the problem domain.

Unfortunately, small perturbations in the weights

can lead to very different solutions. For this reason

and others, decision-makers often prefer a set of

promising solutions given the multiple objectives.

The second general approach is to determine an

entire Pareto optimal solution set or a representative

subset. A Pareto optimal set is a set of solutions that

are non-dominated with respect to each other.

While moving from one Pareto solution to another,

there is always a certain amount of sacrifice in one

objective to achieve a certain amount of gain in the

other. Pareto optimal solution sets are often

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 210

preferred to single solutions because they can be

practical when considering real-life problems, since

the final solution of the decision maker is always a

trade-off between crucial parameters. Pareto

optimal sets can be of varied sizes, but the size of

the Pareto set increases with the increase in the

number of objectives.

II.MULTI-OBJECTIVE OPTIMIZATION

FORMULATION
 A multi-objective decision problem is defined as

follows: Given an n-dimensional decision variable

vector x={x1,…,xn} in the solution space X, find a

vector x* that minimizes a given set of K objective

functions z(x*)={z1(x*),…,zK(x*)}. The solution

space X is generally restricted by a series of

constraints, such as gj(x*)=bj for j = 1, …, m, and

bounds on the decision variables. In many real-life

problems, objectives under consideration conflict

with each other. Hence, optimizing x with respect

to a single objective often results in unacceptable

results with respect to the other objectives.

Therefore, a perfect multi-objective solution that

simultaneously optimizes each objective function is

almost impossible. A reasonable solution to a multi

objective problem is to investigate a set of solutions,

each of which satisfies the objectives at an

acceptable level without being dominated by any

other solution. If all objective functions are for

minimization, a feasible solution x is said to

dominate another feasible solution y (x y ;), if and

only if, zi(x) ≤ zi(y) for i=1, …, K and zj(x) < zj(y)

for least one objective function j. A solution is said

to be Pareto optimal if it is not dominated by any

other solution in the solution space. A Pareto

optimal solution cannot be improved with respect to

any objective without worsening at least one other

objective. The set of all feasible 3 non-dominated

solutions in X is referred to as the Pareto optimal

set, and for a given Pareto optimal set, the

corresponding objective function values in the

objective space is called the Pareto front. For many

problems, the number of Pareto optimal solutions is

enormous (maybe infinite).

III. GENETIC ALGORITHMS

The concept of genetic algorithms (GA) was

developed by Holland and his colleagues in the

1960s and 1970s [2]. GA is inspired by the

evolutionist theory explaining the origin of species.

In nature, weak and unfit species within their

environment are faced with extinction by natural

selection. The strong ones have greater opportunity

to pass their genes to future generations via

reproduction. In the long run, species carrying the

correct combination in their genes become

dominant in their population. Sometimes, during

the slow process of evolution, random changes may

occur in genes. If these changes provide additional

advantages in the challenge for survival, new

species evolve from the old ones. Unsuccessful

changes are eliminated by natural selection.

In GA terminology, a solution vector x∈X is called

an individual or a chromosome.Chromosomes are

made of discrete units called genes. Each gene

controls one or more features of the chromosome.

In the original implementation of GA by Holland,

genes are assumed to be binary numbers. In later

implementations, more varied gene types have been

introduced. Normally, a chromosome corresponds

to a unique solution x in the solution space. This

requires a mapping mechanism between the

solution space and the chromosomes. This mapping

is called an encoding. In fact, GA works on the

encoding of a problem, not on the problem itself.

GA operates with a collection of chromosomes,

called a population. The population is normally

randomly initialized. As the search evolves, the

population includes fitter and fitter solutions, and

eventually it converges, meaning that it is

dominated by a single solution. Holland also

presented a proof of convergence (the schema

theorem) to the global optimum where

chromosomes are binary vectors.

GA uses two operators to generate new solutions

from existing ones: crossover andmutation. The

crossover operator is the most important operator of

GA. In crossover, generally two chromosomes,

called parents, are combined together to form new

chromosomes, called offspring. The parents are

selected among existing chromosomes in the

population with preference towards fitness so that

offspring is expected to inherit good genes which

make the parents fitter. By iteratively applying the

crossover operator, genes of good chromosomes are

expected to appear more frequently in the

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 211

population, eventually leading to convergence to an

overall good solution. The mutation operator

introduces random changes into characteristics of

chromosomes. Mutation is generally applied at the

gene level. In typical GA implementations, the

mutation rate (probability of changing the

properties of a gene) is very small, typically less

than 1%. Therefore, the new chromosome produced

by mutation will not be very different from the

original one. Mutation plays a critical role in GA.

As discussed earlier, crossover leads the population

to converge by making the chromosomes in the

population alike. Mutation reintroduces genetic

diversity back into the population and assists the

search escape from local optima.

Reproduction involves selection of chromosomes

for the next generation. In the most general case,

the fitness of an individual determines the

probability of its survival for the next generation.

There are different selection procedures in GA

depending on how the fitness values are used.

Proportional selection, ranking, and tournament

selection are the most popular selection procedures.

The procedure of a generic GA is given as follows:

Step 1.

Set t =1. Randomly generate N solutions to form the

first population, P1. Evaluate

the fitness of solutions in P1.

Step 2.

Crossover: Generate an offspring population Qt as

follows.

2.1. Choose two solutions x and y from Pt based on

the fitness values.

2.2. Using a crossover operator, generate offspring

and add them to Qt.

Step 3.

Mutation: Mutate each solution x∈Qt with a

predefined mutation rate.

Step 4.

Fitness Assignment: Evaluate and assign a fitness

value to each solution x∈Qt based its objective

function value and infeasibility.

Step 5.

Selection: Select N solutions from Qt based on

their fitness and assigned them

Pt+1.

Step 6.

If the stopping criterion is satisfied, terminate the

search and return the current

population, else, set t=t+1 go to Step 2.

IV. MULTI-OBJECTIVE GENETIC

ALGORITHMS
Being a population based approach, GA are well

suited to solve multi-objective optimization

problems. A generic single-objective GA can be

easily modified to find a set of multiple non-

dominated solutions in a single run. The ability of

GA to simultaneously search different regions of a

solution space makes it possible to find a diverse set

of solutions for difficult problems with non-convex,

discontinuous, and multi-modal solutions spaces.

The crossover operator of GA may exploit

structures of good solutions with respect to different

objectives to create new non-dominated solutions in

unexplored parts of the Pareto front. In addition,

most multi-objective GA do not require the user to

prioritize, scale, or weigh objectives. Therefore, GA

has been the most popular heuristic approach to

multi-objective design and optimization problems.

Jones et al. [3] reported that 90% of the approaches

to multiobjective optimization aimed to

approximate the true Pareto front for the underlying

problem. A majority of these used a meta-heuristic

technique, and 70% of all meta-heuristics

approaches were based on evolutionary approaches.

The first multi-objective GA, called Vector

Evaluated Genetic Algorithms (or VEGA), was

proposed by Schaffer [4]. Afterward, several major

multi-objective evolutionary algorithms were

developed such as Multi-objective Genetic

Algorithm (MOGA), Niched Pareto 6 Genetic

Algorithm, Random Weighted Genetic Algorithm

(RWGA), Nondominated Sorting Genetic

Algorithm (NSGA), Strength Pareto Evolutionary

Algorithm (SPEA), Pareto-Archived Evolution

Strategy (PAES), Fast Non-dominated Sorting

Genetic Algorithm (NSGA-II), Multi-objective

Evolutionary Algorithm (MEA), Rank-Density

Based Genetic Algorithm (RDGA). It is to be noted

that although there are many variations of

multiobjective GA in the literature, these cited GA

are well-known and credible algorithms that have

been used in many applications and their

performances were tested in several comparative

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 212

studies. In the next section details of important

multi-objective genetic algorithms are discussed.

V. REVIEW OF ALGORITHMS PROPOSED

IN LITERATURE
Various MOGAs proposed in the literature are

described in subsequent subsections.

A. VIGA

 An important implementation of MOGA is

called Vector Evaluated Genetic Algorithm

(VEGA), incorporates a modified selection process

to cope with multiple evaluation criteria [5]. In this

paper a modified selection procedure to handle

multiple objectives. He suggested dividing the

whole population into groups equal to a number of

objectives. Selection procedure in each group is

based on a single objective. Mating limits help

limited combinations of individual solutions in the

same group. Pairwise comparison helps to

recognize the dominated solutions. After a few

generations, a set of non-dominated solutions are

recognized to represent the Pareto front [6]. But, the

major difficulty with this algorithm is that it

prevents to determine the location of the Pareto

front. Another problem of the selection procedure,

the individual solutions that are better in one

objective are given preference over the other

individual solutions. This leads the algorithm to

converge to individually best solutions only.

B. MOGA

 In 1993, another implementation of MOGA was

proposed which employed the concept of niching

and dominance along with the rank based fitness

assignment. The non-dominated solutions are

categorized into groups. The individual solutions

are assigned same ranks in each group. The other

groups of the solutions which are dominated by the

current group are assigned next ranks. To maintain

the diversity among the groups, the author proposed

to use dynamically updated sharing. But, the major

problem of this method is slow convergence that

prevent from finding the optimum Pareto front [6].

C. NSGA and Its Variants

Non dominated Sorting Genetic Algorithm

(NSGA) is based on the concept of dominance and

sharing and it is quite similar to multi-objective

genetic algorithms [7]. The NSGA is based on

several layers of classification of individuals as

suggested by [8]. Before selection is performed, the

population is ranked on the basis of non-domination:

all non-dominated individuals are classified into

one category (with a dummy fitness value, which is

proportional to the population size, to provide an

equal reproductive potential for these individuals).

To maintain the diversity of the population, these

classified individuals are shared with their dummy

fitness values. Then this group of classified

individuals is ignored, and another layer of non-

dominated individuals is considered. The process

continues until all individuals in the population are

classified. Since individuals in the first front have

the maximum fitness value, they always get more

copies than the rest of the population. The diversity

among the individual solutions is maintained by

using the sharing concept. How- ever, NSGA does

not involve dynamic updating of any niche that

makes it faster than MOGA. The algorithm of the

NSGA is not very efficient, because Pareto ranking

has to be repeated again. Evidently, it is possible to

achieve the same goal in a more efficient way.

Niched Pareto Genetic Algorithm (NPGA) is based

on the concept of dominance and sharing. NPGA

differs from earlier approaches in the selection of

individual solutions [9]. Here, the selection is based

on a modified tournament selection than the

proportional selection (as in NSGA). The basic idea

of the algorithm is quite clever: two individuals are

randomly chosen and compared against a subset of

the entire population (typically, around 10% of the

population). If one of them is dominated (by the

individuals randomly chosen from the population)

and the other is not, the the non- dominated

individual wins. All the other situations are

considered as a tie (i.e., both competitors are either

dominated or non-dominated). When there is a tie,

the result of the tournament is decided through

fitness sharing.

NSGA- II is fast, elitist algorithm proposed by

[10] and it is a generational algorithm that works

upon the concept upon dominance. Instead of

sharing, NSGAII uses the crowding distance to

maintain the diversity among the individual

solutions. Here, the author proposed to use

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 213

tournament selection strategy for selection of

individual solutions. In this algorithm, to sort a

population of as- signed size according to the level

of nondomination, each solution must be compared

with every other solution in the population to find if

it is dominated. Solutions of the first non-

dominated front are stored in the first Pareto front,

solutions of the second front on the second Pareto

front and so on. The new population is constituted

by solutions on the first Pareto front, if they are less

than the initial population size: solutions from the

next front are taken according to their ranks. In the

NSGA-II, for each solution one has to determine

how many solutions dominate it and the set of

solutions to which it dominates. The NSGA-II

estimates the density of solutions surrounding a

particular solution in the population by computing

the average distance of two points on either side of

this point along each of the objectives of the

problem. This value is the so-called crowding

distance. During selection, the NSGA-II uses a

crowded-comparison operator which takes into

consideration both the non-domination rank of an

individual in the population and its crowding

distance (i.e., non-dominated solutions are preferred

over dominated solutions, but between two

solutions with the same non-domination rank, the

one that resides in the less crowded region is

preferred). The NSGA-II does not use an external

memory as the other MOEAs previously discussed.

Instead, the elitist mechanism of the NSGA-II

consists of combining the best parents with the best

offspring obtained (i.e. non-dominated solutions are

preferred over dominated solutions, but between

two solutions with the same non-domination rank,

the one that resides in the less crowded region is

preferred). The NSGA-II does not use an external

memory as the other MOEAs previously discussed.

Instead, the elitist mechanism of the NSGA-II

consists of combining the best parents with the best

offspring obtained (i.e. a (µ + λ) selection). Due to

its clever mechanisms, the NSGA-II is much more

efficient (computationally speaking) than its

predecessor, and its performance is so good, that it

has become very popular in the last few years,

becoming a landmark against which other multi-

objective evolutionary algorithms have to be

compared.

D. SPEA and Its Variants

Several researches were carried to improve the

performance of VEGA, NPGA and NSGA. One

such algorithm was proposed by [11] called the

Strength Pareto Evolutionary Algorithm (SPEA).

SPEA is an elitist MOGA where elitism helps to

improve its convergence properties. Here, they

proposed to maintain an archive of non-dominated

solutions from the beginning of the algorithm. The

archive is external to the main population, and it

takes part in fitness computation. With the use of

the archive, its size may increase very large so its

pruning may be done to keep it in limits. Limited

archive size helps in the selection of individual

solutions. SPEA uses an archive containing non-

dominated solutions previously found (the so-called

external non-dominated set). At each generation,

non- dominated individuals are copied to the

external non-dominated set. For each individual in

this external set, a strength value is computed. This

strength is similar to the ranking value of MOGA

[12], since it is proportional to the number of

solutions to which a certain individual dominates.

In SPEA, the fitness of each member of the current

population is computed according to the strengths

of all external non- dominated solutions that

dominate it. The fitness assignment process of

SPEA considers both close-ness to the true Pareto

front and even distribution of solutions at the same

time. Thus, instead of using Niches based on

distance, Pareto dominance is used to ensure that

the solutions are properly distributed along the

Pareto front. Although this approach does not

require a niche radius, its effectiveness relies on the

size of the external non-dominated set. Since, the

external non-dominated set participates in the

selection process of SPEA, if its size grows too

large, it might reduce the selection pressure, thus

slowing down the search. Because of this, the

authors decided to adopt a technique that prunes the

contents of the external nondominated set so that its

size remains below a certain threshold.

SPEA2 is an improved method for pruning the size

of the archive that retain the boundary solutions in

the archive. SPEA2 involves a fine grained fitness

function based number of individual solutions that

dominate a current solution and how many it

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 214

dominates. Fitness function also includes density

information based on a k-NN algorithm. SPEA2 is

found to be superior in performance than NSGA-II,

especially in high dimensional search spaces [13].

SPEA2 has three main differences with respect to

its predecessor.

 1) It incorporates a fine-grained fitness assignment

strategy which takes into account for each

individual the number of individuals that dominate

it and the number of individuals by which it is

dominated

 2) It uses a nearest neighbour density estimation

technique which guides the search more efficiently.

 3) It has an enhanced archive truncation method

that guarantees the preservation of boundary

solutions.

E. PAES

Pareto Archived Evolutionary Strategy (PAES)

algorithm was proposed by [14]. It is a simple

multi-objective evolutionary algorithm using a

single parent- single child strategy. In this strategy,

binary strings and bitwise mutation are used to

create children in replacement of real parameters.

PAES algorithm consists of a (1 + 1) Evolution

strategy (i.e., a single parent that generates a single

offspring) in combination with a historical archive

that records the non-dominated solutions previously

found [15]. This archive is used as a reference set

against which each mutated individual is being

compared. Such a historical archive is the elitist

mechanism adopted in PAES. However, an

interesting aspect of this algorithm is the procedure

used to maintain diversity which consists of a

crowding procedure that divides the objective space

in a recursive manner. Each solution is placed in a

certain grid location based on the values of its

objectives (which are used as its coordinates or

geographical location). A map of such a grid is

maintained, indicating the number of solutions that

reside in each grid location. Since the procedure is

adaptive, no extra parameters are required (except

for the number of divisions of the objective space).

F. PESA and Its Variants

Pareto Envelope based Selection Algorithm

(PESA) was proposed by [16] which uses a small

internal population and a large external population.

The diversity is maintained by borrowing the

concept of the hyper grid division of the phenotype

space from PAES. But, the selection process is per-

formed by the crowding distance method. In PESA,

the external population plays an important role as it

is considered to determine selection as well as to

maintain diversity among the solutions.

The PESA is further revised to a new version called

PESA-II [17]. The PESA-II uses region based

selection. In the region based selection, the unit of

selection is hyper box rather than an individual.

Further, an individual is selected randomly from the

hyperbox. The main objective of a PESA set of

algorithms is to reduce the computational overhead

associated with other representative methods.

G. AMGA and ItsVariants

 In Micro Genetic Algorithm (MGA) was

originally proposed by [18]. It is a GA with a small

population and reinitialization process. The

working of the MGA involves the generation of

random population, which gets loaded into memory

in two different portions named replaceable and

non-replaceable portion. The contents of

replaceable portion get changed after each cycle of

MGA whereas the contents of non-replaceable

portion never changes during execution of the

algorithm. The population of MGA is randomly

taken as a mixture of individuals from both the

portions. During each iteration, the algorithm

experiences genetic operators. At the end of each

iteration, two non-dominated individuals from final

population are selected to compare with contents of

the external memory. In this way, all dominated

solutions from the external memory are removed.

The MGA uses three forms of elitism:

 1) It retains non-dominated solutions found within

the internal iteration of the algorithm.

 2) It uses a replaceable portion of the memory

whose contents are partly restored at certain

intervals.

3) It exchanges the population of the algorithm by

nominal solutions created

The Archive based Micro Genetic Algorithm

(AMGA) is a constrained multi-objective

evolutionary optimization algorithm [19]. It is a

generational genetic algorithm since during a

particular iteration (generation), only solutions

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 215

created before that iteration takes part in the

selection process. AMGA uses genetic variation

operators such as crossover and mutation to create

new solutions. For the purpose of selection, AMGA

uses a two tier fitness assignment mechanism; the

primary fitness is the rank which is based on the

domination level and the secondary fitness is based

on the diversity of the solutions in the entire

population. This is in contrast to NSGA-II, where

diversity is computed only among the solutions

belonging to the same rank. The AMGA generates a

very small number of new solutions at each

iteration, and can be classified as a micro- GA.

Generation of a very small number of solutions at

every iteration helps in reducing the number of

function evaluations by minimizing exploration of

less promising search regions and directions. The

AMGA maintains an external archive of good

solutions obtained. Use of the external archive

helps AMGA in reporting a large number of non-

dominated solutions at the end of the simulation. It

also provides information about its search history

which is exploited by the algorithm during the

selection operation. In each iteration, the parent

population is created from the archive and the

binary tournament selection is performed on the

parent population to create the mating population.

The off- spring population is created from the

mating pool, and is used to update the archive. The

size of the archive determines the computational

complexity of the AMGA. The design of the

algorithm is independent of the encoding of the

variables and thus the proposed algorithm can work

with almost any kind of encoding (so long as

suitable genetic variation operators are provided to

the algorithm). The algorithm uses the concept of

Pareto ranking borrowed from NSGA-II and

includes improved diversity computation and

preservation techniques. The diversity measure is

based on efficient nearest neighbor search and

modified crowding distance formulation.

 An improved Archive-based Micro Genetic

Algorithm (referred to as AMGA2) for constrained

multiobjective optimization is proposed in [20].

AMGA2 is designed to obtain fast and reliable

convergence on a wide variety of optimization

problems. AMGA2 benefits from the existing

literature in that it borrows and improves upon

several concepts from the existing multi-objective

optimization algorithms. Improvements and

modifications to the existing diversity assessment

techniques and genetic variation operators are also

proposed. AMGA2 employs a new kind of selection

strategy that attempts to reduce the probability of

exploring undesirable search regions. The proposed

AMGA2 is a steady-state genetic algorithm that

maintains an external archive of the best and

diverse solutions and a very small working

population. AMGA2 has been designed to facilitate

the decoupling of the working population, the

external archive, and the number of solutions

desired as the outcome of the optimization process.

Comprehensive benchmarks and comparison of

AMGA2 with the current state-of-the-art multi-

objective optimization algorithms demonstrate its

improved search capability

VI. CONCLUSIONS
The MOGA has been successfully employed to

solve the various problems of many domains having

multiple conflictingobjectives. This paperpresented

the background details of multi-objective genetic

algorithms and highlighted the importance of

NSGA and other algorithms proposed in the

literature.

ACKNOWLEDGMENT

The Author is thankful to Punjab Technical

University, Jalandhar for the support and

motivation for research.

REFERENCES
[1] Tiwari, S.: Development and integration of

geometric and optimization algorithms for packing

and layout design. Ph.D. thesis, Clemson University

2009.

[2] Holland, J.H., Adaptation in Natural and

Artificial Systems, University of Michigan Press,

Ann Arbor, 1975.

[3] Jones, D.F., Mirrazavi, S.K., and Tamiz, M.,

Multiobjective meta-heuristics: an overview of the

current state-of-the-art, European Journal of

Operational Research 137(1), pp. 1-9, 2009.

[4] Schaffer, J.D. Multiple Objective optimization

with vector evaluated genetic

International Journal of Computer Techniques -– Volume 3 Issue 2, Mar-Apr 2016

ISSN: 2394-2231 http://www.ijctjournal.org Page 216

algorithms.International Conference on Genetic

Algorithm and their applications, 1985.

[5] Ahmadian, K., Golestani, A., Mozayani, N.,

Kabiri, P., Anew multi-objective evolutionary

approach for creatingensemble of classifiers. In:

Proc. of IEEE InternationalConference on Systems,

Man and Cybernetics (ISIC), pp.1031–1036. IEEE,

2007.

[6] Engen, V.: Machine learning for network based

intrusiondetection: an investigation into

discrepancies in findingswith the kdd cup’99 data

set and multi-objective evolutionof neural network

classifier ensembles from imbalanceddata. Ph.D.

thesis, Bournemouth University 2010.

[7] Srinivas, N., Deb, K.: Muiltiobjective

optimization usingnondominated sorting in genetic

algorithms. Evolution- ary computation 2(3), pp.

221–248 ,1994.

[8] Goldberg, D., Holland, J.: Genetic algorithms

and machinelearning. Machine Learning 3(2), pp.

95–99, 1988.

[9] Horn, J., Nafpliotis, N., Goldberg, D.: A niched

paretogenetic algorithm for multiobjective

optimization. In: Proc.of the First IEEE Conference

on Evolutionary Computation, pp. 82–87. IEEE

1994.

[10] Deb, K., Agrawal, S., Pratap, A., Meyarivan,

T.: A fastelitist non-dominated sorting genetic

algorithm for multiobjectiveoptimization: Nsga-ii.

Lecture notes in computer science 1917, pp. 849–

858 2000.

[11] Zitzler, E., Deb, K., Thiele, L.: Comparison of

multiobjectiveevolutionary algorithms: Empirical

results. Evolutionary computation 8(2), pp. 173–

195 2000.

[12] Fonseca, C., Fleming, P., et al.: Genetic

algorithms formultiobjective optimization:

Formulation, discussion andgeneralization. In: Proc.

of the fifth international conferenceon genetic

algorithms, vol. 1, p. 416. San Mateo, California

1993.

[13] Ziztler, E., Laumanns, M., Thiele, L.: Spea2:

Improvingthe strength pareto evolutionary

algorithm for multiobjectiveoptimization.

Evolutionary Methods for Design,Optimization,

and Control pp. 95–100 (2002)

[14] Knowles, J., Corne, D.: The pareto archived

evolutionstrategy: A new baseline algorithm for

pareto multiobjectiveoptimisation. In: Proc. of the

1999 Congress onEvolutionary Computation (CEC),

vol. 1. IEEE , 1999.

[15] Coello Coello, C.: Evolutionary multi-

objective optimization:a historical view of the field.

Computational IntelligenceMagazine, IEEE 1(1),

pp. 28–36, 2006.

 [16] Corne, D., Knowles, J., Oates, M.: The pareto

envelopebasedselection algorithm for

multiobjective optimization.In: Proc. of Parallel

Problem Solving from NaturePPSN VI, pp. 839–

848. Springer 2000.

[17] Corne, D., Jerram, N., Knowles, J., Oates, M.,

et al.:Pesa-ii: Region-based selection in

evolutionary multiobjectiveoptimization. In: Proc.

of the Genetic and EvolutionaryComputation

Conference (GECCO2001). Cite- seer, 2001.

[18] Coello, C.C., Toscano, P.G.: A micro-genetic

algorithm formultiobjective optimization. In: Proc.

of Evolution- aryMulti-Criterion Optimization, pp.

126–140. Springer, 2001.

[19] Tiwari, S., Koch, P., Fadel, G., Deb, K.: Amga:

anarchive-based micro genetic algorithm for multi-

objectiveoptimization. In: Proc. of Genetic and

EvolutionaryComputation conference (GECCO-

2008), Atlanta, USA, pp.729–736, 2008.

[20] Tiwari, S., Fadel, G., Deb, K.: Amga2:

improving the performanceof the archive-based

micro-genetic algorithm formulti-objective

optimization. Engineering Optimization43(4), pp.

377–401, 2011.

