
International Journal of Computer Techniques -– Volume 2 Issue 2, Mar – Apr 2015

ISSN :2394-2231 http://www.ijctjournal.org Page 128

An Improved Search Algorithm for Resource Allocation in Cloud

Databases
Radhya Sahal

1
, Sherif M. Khattab

2
, Fatma A. Omara

3

Computer science department, Cairo University/Faculty of computer science, Egypt, Cairo

--************************----------------------------------

Abstract:

The Virtual Design Advisor (VDA) has addressed the problem of optimizing the performance of Database

Management System (DBMS) instances running on virtual machines that share a common physical

machine pool. In this work, the search algorithm in the optimization module of the VDA is improved. An

Exhaustive Greedy algorithm (EG) studies the effectiveness of tuning the allocation of the shared

resources (the share values); and presents a mathematical analysis of the effect of the share values on

reaching an optimal solution. Also, it studies the effect of the share values of resources on the feasibility

and speed of reaching an optimal solution. On the other hand, the particle swarm optimization (PSO)

heuristic is used as a controller of the greedy heuristic algorithm to reduce trapping into local optima. Our

proposed algorithm, called Greedy Particle Swarm Optimization (GPSO), was evaluated using prototype

experiments on TPC-H benchmark queries against PostgreSQL instances in Xen virtualization

environment. Our results show that the GPSO algorithm required more computation but in many test cases

succeeded to escape local optima and reduce the cost as compared to the greedy algorithm alone. Also, the

EG search algorithm was faster than the GPSO algorithm when the search space of the share values grows.

Keywords: - Virtualization, Resource Allocation, Particle Swarm Optimization, Greedy Search,

Query Optimizer.

--************************----------------------------------

I. INTRODUCTION

Cloud computing allows users to use

computational resources and services of data

centers (i.e., machines, network, storage,

operating systems, application development

environments, application programs) over the

network to deploy and develop their applications

[1]. The main feature of cloud computing is

providing self-service provisioning, which allows

the users to deploy their own sets of computing

resources [2].

Cloud computing relies on virtualization to

partition and multiplex physical machine

infrastructure [4]. A virtual machine

configuration or resource allocation controls the

sharing of physical resources allocated to VMs.

The problem of optimizing the performance of

the virtualized applications (i.e., the applications

that run on VMs) is critical to the success of

cloud computing, and indeed VM configuration

affects application performance [2, 5].

Database Management Systems (DBMS) are

important consumers of cloud resources. the

Virtualization Design Problem (VDP) studies

how DBMS instances can get a resource

allocation for each VM out of the shared physical

pool [6, 7]. The Virtual Design Advisor (VDA) is

a technique that offers a solution for the VDP

problem. It provides recommended

configurations for multiple VMs running

different workloads over shared physical

resources. VDA explores the characteristics of

workloads to distinguish their resource-

sensitivity (e.g., CPU-intensive or I/O-intensive)

and makes a decision for the best resource

allocation for VMs that run the workloads. VDP

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 129

is considered as a search problem to minimize the

allocation cost of virtualized resources for

database systems in cloud environment [2, 6, 7].

Whereas our previous works focused on

automating the manual calibration process for

tuning parameters of DBMS query optimizer and

introduced search algorithm to improve the

resource allocation in cloud databases [8-10]. In

this work, an Exhaustive Greedy algorithm (EG)

will be introduced for studying the effectiveness

of tuning the allocation of the shared resources

(the share values); and for presenting a

mathematical analysis of the effect of the share

values on reaching an optimal solution. Also, it

will study the effect of the share values of

resources on the feasibility and speed of reaching

an optimal solution. In other words, EG search

algorithm would benefit from using a share

parameter value that is large, and thus allows for

fast convergence, and at the same time gives a

result that is as good as with smaller and slower-

converging shares.

On the hand, we propose a search algorithm,

namely Greedy Particle Swarm Optimization

(GPSO), as a hybrid between two heuristics:

greedy and particle swarm optimization. Particle

Swarm Optimization (PSO) is an evolutionary

algorithm that explores the search space of a

given problem to find optimal or near-optimal

solutions for maximization and minimization

search problems. Although, there are a wide

variety of search techniques such as Genetic

Algorithm (GA), Tabu Search (TS), Simulated

Annealing (SA), and the Evolution Strategy (ES),

the PSO algorithm is considered simple in

concept, easy to implement, and computationally

efficient [9].

The goal of the proposed GPSO algorithm is to

optimize resource configurations based on the

workload profile in virtualized environments.

The GPSO algorithm has been implemented in

the VDA enumerator module. To evaluate our

proposed GPSO algorithm, experiments have

been conducted to allocate the CPU resource

over virtual machines. Tests have been

performed using PostgreSQL 8.4.8, running

TPC-H benchmark queries as workloads [11, 12].

The results show that the GPSO algorithm can

provide effective configurations for different

types of workloads.

The combination of the proposed GPSO

algorithm with a profiling technique that

classifies workloads characteristics in terms of

resource consumption (e.g., CPU, Memory, and

I/O) gives an insight into the resource intensivity

of workloads. This insight can guide the cloud

provider to allocate an appropriate amount of

resources to incoming workloads. The provider

can arrange the workloads over multiple pools

based on resource requirements or use cloud

bursting to maintain strict SLA even when some

incoming workloads are heavily resource-

intensive. Cloud bursting is an application

deployment model in which an application that

runs in a private cloud or data center bursts into a

public cloud when the demand for computing

capacity spikes [13] The advantage of such a

hybrid cloud deployment is that an organization

only pays for extra compute resources when they

are needed The proposed GPSO algorithm can be

run periodically or on policy-defined events to

capture the variation of the dynamic workloads.

The rest of this paper is organized as follows.

Related work is described in Section II. The

optimization problem addressed in this work is

described in Section III. Section IV and Section V

motivate and describe the key idea of the

proposed algorithm. An experimental evaluation

is presented in Section VI. Finally, conclusions

and future work are in SectionVII.

II. RELATED WORK

A significant amount of research has been
conducted in the fields of performance
optimization of applications running in virtualized
environments [7, 14] and resource allocation [15,
16].

A highly-related problem to the work of this
paper is the virtualization design problem [6, 7],
which addresses the question of how to optimally
(with respect to application throughput) partition
the resources of a physical machine over a
number of VMs, each running a potentially
different database appliance. In [7], the virtual
design advisor was presented to solve the
virtualization design problem by using the query
optimizer, which is typically built-in in most
DBMSs, as a cost model to evaluate potential
resource partitioning configurations.

This “what-if” usage of the DBMS query
optimizer has also been used in non-virtualized

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 130

environments to justify upgrades of resources
based on the predictions of the expected
improvement in workload performance [17, 18].
In [2], the virtual design advisor has been used to
optimize the performance of database appliances
that were deployed in the Amazon EC2 cloud.

Performance model calibration is an important
task in many performance optimization problems
[7, 19, 20]. Automating tedious calibration
processes is of great benefit to the overall
optimization framework. The Automatic
Calibration Tool (ACT) has been proposed in our
previous work to automate the calibration process
of the DBMS query optimizer within the virtual
design advisor [8].

The virtual design advisor employs a white-box
approach for modeling the performance of the
DBMS [7]. On the other hand, the black-box
approach for performance modeling has been
used in [14] to drive an adaptive resource control
system that dynamically adjusts the resource
share of each tier of a multi-tier application within
a virtualized data center. The two approaches,
black-box and white-box, also were used to solve
resource-provisioning problem for DBMS on the
top of IaaS cloud [21].

Resource allocation is an important challenge
that faces cloud computing providers regardless
of the hierarchy of services; especially, the
question of how the cloud provider can meet the
clients’ Service Level Agreements (SLAs) and
maximize total profit is of particular interest.

 In [22, 23], the SLA-based resource allocation
problem for multi-tier cloud applications is
considered for a distributed solution for each of
processing, data storage, and communication
resources. The problem is cast as a three-
dimensional optimization problem.

The cost-performance tradeoff in cloud IaaS
was addressed in [24]. The problem was
formulated as a multi-objective optimization. The
proposed model was built based on a fine-grained
charging model and a normalized performance
model. The solution used genetic algorithms, and
the experimental results proved the effective of
the proposed model.

On the other hand, there is a wealth of proposed
approaches using the Particle Swarm
Optimization (PSO) heuristic technique in various
domains in general and in dynamic environments
in particular. Basically, PSO is an optimization

technique for static environments [25]. In the real
world, however, many applications pose non-
stationary optimization problems; they are
dynamic, meaning that the environment and the
characteristics of the global optimum can change
timely. Several successful PSO algorithms have
been developed for dynamic environments. PSO
has to adapt its ability to improve and track the
trajectory of the changing global best solution in a
dynamic environment.

One of these algorithms is fast multi-swarm
optimization (FMSO) [26]. It uses two types of
swarm: one to detect the promising area in the
whole search space and the other as a local search
method to find the near-optimal solutions in a
local promising region in the search space.

Another approach is used to adapt PSO in
dynamic environments [27]. It is based on
tracking the change of the goal periodically. This
tracking is used to reset the particle memories to
the current positions allowing the swarm to track
a changing goal with minimum overhead [27].

Cooperative Particle Swarm Optimizer (CPSO)
was introduced for employing cooperative
behavior to significantly improve the performance
of the original PSO algorithm [28]. This is
achieved by using multiple swarms to optimize
different components of the solution vector
cooperatively. While the original PSO uses a
population of D-dimensional vectors, CPSO
partitions these vectors into D swarms of one-
dimensional vectors, each swarm representing a
dimension of the original problem. This work
proposes an algorithm, called greedy particle
swarm optimization (GPSO), to optimize the
allocation of shared resources to minimize
estimated cost and enhance VM configuration. By
devising a profiling technique to obtain statistical
models that deal with different workloads
behavior, an intelligent resource provisioning can
be achieved to adapt to dynamic workloads to any
application workload.

III. RESOURCE ALLOCATION PROBLEM

This section is dedicated to discuss the
virtualization design problem (VDP) and to
illustrate the virtual design advisor (VDA)
solution [6, 7].

A. Virtualization Design Problem (VDP)

In the virtualization design problem (VDP), N

VMs run on a shared physical machine pool and

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 131

each VM runs its own instance of a DBMS. The

shared physical pool is represented by M

different resources. Each VMi has a workload, Wi.

The VDP raises the question: “What fraction rij

of each shared physical resource j should be

allocated to each VMi in order to optimize the

overall performance of the workloads Wi?” [6-8].

The set of allocated resource shares to the ith VM

can be represented as a vector:
� = 	 ���, ��, … , �
�(1)

For example, consider three shared resources:
CPU, memory, and I/O, that is, M=3. An
allocation of 50% CPU, 30% memory, and 25%
I/O to VM1 results in the vector R1= [0.5, 0.3,
0.25].

We assume that each workload Wi results in a
cost (e.g., running time) under resource allocation
Ri. This cost is represented by:

�
�����, ��� (2)

The total cost for all workloads is represented by:

					Cost�ℛ� = ∑ �
�����, ���
�
��� (3)

The objective of the VDP is getting an
appropriate resource allocation to minimize the
overall cost for all workloads, that is, to find:

����� �!
���ℛ�� (4)

The estimated cost reflects application
performance. The work in this paper considers
only the CPU resource. The VDP was defined and
a solution was presented in [6, 7]. The next
section explains in detail the virtual design
advisor as a solution for the VDP.

B. Virtual Design Advisor (VDA)

The architecture and design of the Virtual
Design Advisor (VDA), which was introduced as
a solution for the virtualization design problem, is
shown in Figure 1 [7]. The VDA is divided into
two modules: configuration enumeration, which
includes the search algorithm, and cost model.
The modules interact to make recommended
configurations using a calibration process, an
automation of which was proposed in our
previous work [8]. The calibration model tunes
the cost model parameters according to each
enumerated configuration. A brief description of
both modules is presented next.

1) Configuration Enumeration Module
The configuration enumeration module

enumerates resource allocations for the VMs. It

implements a search algorithm, such as greedy
search and dynamic programming, for
enumerating and searching candidate resource
allocations [7]. The greedy algorithm makes the
decisions of increasing and decreasing the
resources allocated to VMs based on the
estimated cost of the given workloads.

2) Cost Model
 The VDA tunes the cost model of the DBMS

query optimizer to reflect a VM with a certain

resource allocation. This tuning is done by setting

appropriate values for the query optimizer

parameters. The query optimizer in a DBMS

estimates the cost of an execution plan of a given

SQL workload (Wi) on a DBMS instance (Di)

using the following vector of optimizer tuning

parameters:

"� =	 �#��, #��, … , #�$� (5)

Fig. 1: Virtualization Design Advisor (VDA) Architecture.

3) Calibration
 In VDA, calibration is a process to map each

resource allocation into a corresponding set of
values of the query optimizer's tuning parameters.
This process uses a calibration model that is
constructed as a set of calibration equations [7, 8].
The query optimizer becomes aware of the
virtualized environment it runs in, and chooses an
optimal execution plan by estimating and
comparing the costs of a set of plans based on the
given resource allocation [8].

C. Optimization Problem in VDA

The search algorithm in the Virtual Design
Advisor uses the calibration process to enumerate
configurations for the VMs. The search
algorithms use the ”what-if” mode of the query

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 132

optimizer's cost model [6]. The “what-if” mode
can be expressed as ``what will be the estimated
cost of the given query workload under the
candidate resource allocation.’’ The search
algorithm modifies the query optimizer's tuning
parameters using the calibration process. The
overall optimization process would ideally profile
the intensivity of workload (e.g., CPU-intensive
or non CPU-intensive) and guide the VDA to
allocate the suitable amounts of resources to each
VM. The VDA uses a heuristic greedy algorithm,
which suffers from the problem of being trapped
in local optima [7]. A new search algorithm based
on PSO is proposed in this paper to reduce
trapping in local optima, as will be described in
Section V. The next section motivates the
proposed search algorithm by analyzing the
greedy search algorithm used in the VDA.

IV. GREEDY SEARCH ALGORITHM

In this section, we present the greedy search
algorithm; follow that by studying the
effectiveness of some of its parameters (the share
values); and present a mathematical analysis of
the effect of the share values on reaching an
optimal solution.

A. Greedy Search Algorithm

 The VDA uses a greedy search algorithm to
decide on increasing and decreasing the amounts
of resources allocated to VMs. The allocation is
decided based on estimating the cost of the input
workloads [7]. In each iteration of the greedy
algorithm, a small fraction (called a share) of a
resource is de-allocated from the VM that will get
hurt the least and allocated to the VM that will
benefit the most. We note that by varying the
share values, it is possible to obtain better
solutions (less cost) than with fixed share values
as used in [7]. This is illustrated in the next
subsections.

B. Effect of Share values in Greedy Search

Algorithm

In this section, we study the effect of the share
values on the feasibility and speed of reaching an
optimal solution. We noticed that for many
problem instances, it is possible to reach an
optimal result with more than one setting of the
share values. In such cases, large values result in
faster convergence to an optimal solution. In other
words, the greedy search algorithm would benefit
from using a share parameter value that is large,
and thus allows for fast convergence, and at the

same time gives a result that is as good as with
smaller and slower-converging shares.

To illustrate the above-described effect of the
share parameter, the greedy algorithm was run
using two TPC-H workloads, which will be
described later in Section VI, for 100 different
share values starting from 0.1% to 10%. As
shown in Figure 2, the same cost can be reached
using different share values. Among these values,
higher share values result in faster convergence.
So, we need to obtain the optimal share value by
exploring the relationship between the
configurations calculated using theses share
values.

Fig. 2: Optimal cost can be reached using multiple share values.

Experiment was done using two virtual machines running two different
workloads

C. Optimal Share Value

For the greedy algorithm to reach an optimal
configuration, the difference %� between the
default configuration %&'_!
 '� and optimal
configuration 	
#�_!
 '�of each VMi has to be a
multiple of the share value. The previous
statement is a direct implication of how the
greedy search algorithm works. Having a share
value that is the greatest common divisor (GCD)
of all the difference values di, ensures that the
optimal configuration is reached and speeds up
the convergence time. That is, the GCD of
differences di is considered the optimal share
value that results in the fastest convergence to an
optimal estimated cost amongst all other share
values. Hence, the GCD of differences for N
VMs’ optimal configurations is described as
follows:

0

2

4

6

8

10

1.016E+14

1.017E+14

1.018E+14

1.019E+14

1.020E+14

1.021E+14

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
 i

n
 S

e
co

n
d

s

E
st

im
a

te
d

 C
o

st

Share Values

Estimated Cost Optimal Estimated Cost Time

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 133

%� = �)��%&'_!
 '� −
#�_!
 '�) (6)

#����+_�ℎ��& = GCD�%�, %�, … . . , %0� (7)

To illustrate the above definitions using an
example, suppose that the optimal CPU
configurations for four VMs are 30.8%, 22.2%,
29.3%, and 17.7%. For four VMs, and the default
CPU configuration is 25%. Thus,

%� = 5.8	, %� = 2.8	, %4 = 4.3	, %7 = 7.3

� %	
#����+_�ℎ��& = GCD�5.8	,2.8	,4.3	,7.3� = 0.1.

So, 0.1 is the optimal share value which can cause
the greedy algorithm to reach optimal
configurations as fast as possible.

For another example, Figure 2 depicts that the
optimal estimated cost was reached using
multiple share values (0.1, 0.2, 0.4, 0.5, 0.8, 1.0,
1.6, 2.0, 4.0, and 8.0), and Figure 3 shows the
CPU configurations that correspond to all share
values. The default CPU configuration for the two
VMs used is 50%, and the optimal CPU
configurations are 58% and 42% for VM1 and
VM2, respectively. That is,

%� = 8	, %� = 8	� %	
#����+_�ℎ��& = GCD�8,8� = 8

On the other hand, different share values result
in different convergence time for the greedy
algorithm. For example, the share values 0.1, 0.2,
0.4, 0.5, 0.8, 1.0, 1.6, 2.0, 4.0, and 8.0 result in
reaching the optimal configuration after 80, 40,
20, 16, 10, 8, 5, 4, 2 and 1 iterations of the greedy
algorithm, respectively. The largest share value,
among all share values that guarantee reaching
the optimal solution, results in the fastest running
time of the greedy algorithm.

Fig. 3 VM Configurtions reached using different share values for two

VMs. The optimal configuration is 58% and 42%.

D. Effect of Search Space Size

One can think of running the greedy algorithm
exhaustively for a large set of share values and
reporting the minimum cost that is reached over
all the exhaustive runs. This exhaustive greedy
algorithm would be affected by the size of the
search space, the share values in this case. When
the search space of share values is larger (i.e.,
with finer granularity of share value), the reached
estimated cost is lower, and the running time is
higher. Figure 4 depicts the effect of enlarging the
search space of share values for two workloads
running on two VMs. The estimated cost
decreases with increasing search space until share
value granularity is low enough to include a value
that is a common factor of all allocation
differences di, at which point increasing the
search space merely results in increased running
time without any improvement in estimated cost.

The result in Figure 4 is for one resource only
(the CPU), and thus, the greedy algorithm has one
share parameter. Increasing the number of
resources results in exponentially larger search
space for the share values and a corresponding
increase in running time. We need another
algorithm that reaches optimal share values
efficiently even with more than one resource. In
our proposed algorithm, we use the particle
swarm optimization search technique to escape
from local optima and to minimize the running
time.

38

42

46

50

54

58

62

0 1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 A

ll
o

ca
ti

o
n

s
 %

Share Values

VM1-Exhaustive-Config VM2-Exhaustive-Config

VM1-Optimal-Config VM2-Optimal-Config

Default-Config

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 134

Fig. 4 Different Search Spaces for Exhaustive Greedy for two workloads

V. GREEDY PARTICLE SWARM

OPTIMIZATION (GPSO)

In this section, we present our proposed hybrid

search algorithm, namely the Greedy Particle

Swarm Optimization (GPSO). We start by

describing the particle swarm optimization and

follow that by a description of the proposed

hybrid algorithm.

A. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is one of
the modern evolutionary algorithms used to
explore the search space of a given problem [25].
PSO simulates the social behavior of individuals
(particles) of certain kinds of animals (e.g., birds’
flocks and fish schools). In PSO, the population of
particles is typically called a swarm, whereas each
candidate solution can be thought of as a particle
within the swarm. The idea of PSO is based on
introducing the observation of swarming
movement to the field of evolutionary computation
[29]. Each particle moves in a D-dimensional
space (D represents the number of decision
variables). Each particle is thus described by a
tuple of D-dimensional vectors �X<, V<, P<, G<� ,
which (respectively) represent the current
position,the velocity,the personal best position that
the particle has achieved, and the global best
position that is tracked by the entire swarm along
each of the D dimensions.

Initially, the PSO algorithm chooses candidate
solutions randomly. Then, each particle moves in
randomly-defined directions based on best of itself

and of its peers. During each iteration, the particles
evaluate their positions towards a goal. They
update their own velocities using a weighted
function of globally best positions and their
previous positions and then use these velocities to
adjust their new positions. The used equations to
update the velocity and position along each
dimension for each particle are:

?�@�� + 1� = B?�@��� + !����#)&���@��� − C�@���� +
																																											!�����)&��@��� − C�@����(8)

								C�@�� + 1� = C�@��� + ?�@�� + 1� (9)

where all parameters are represented in dth
dimension at time t, vid(t) is the velocity of ith
particle, w.vid(t) is the inertia component
responsible for keeping the particle moving in the
same direction, w�w ∈ [0.8, 1.2]) is an inertia
weight that determines how much the previous
velocity is preserved, xid(t) is the position of the ith
particle, pbestid(t) is the personal best position for
the ith particle, gbestd(t) is the globally best
position, c1, c2 are positive acceleration
coefficients ranging from 0 to 4, and r1, r2 are
random numbers drawn from the uniform
distribution U[0,1] [30]. The stopping criteria are
that either the maximum number of iterations is
reached or the minimum error condition is
satisfied. An improved version of PSO, SSM-PSO,
is used to avoid invalid-solution cases [31].

The parameters of PSO influence the
optimization performance. PSO needs to predefine
numerical coefficients (the maximum velocity,
inertia weight, momentum factor, societal factor,
and individual factor) and swarm size. The ability
to globally optimize the solution relies greatly on
the setting of these parameters. The maximum
velocity and inertia weight are employed to
balance global exploration and local exploitation.
A large value of inertia weight facilitates better
global exploration ability, whereas a small value
enhances local exploitation capability. In other
words, they affect the ability of escaping from
local optima and refining global optimization. The
societal and individual factors determine the
ability of exploring and exploiting. The size of the
swarm balances the requirement of global
optimization and computational cost [32-34].

0

4

8

12

16

20

1.0172467E+14

1.0172469E+14

1.0172471E+14

1.0172473E+14

1.0172475E+14

1.0172477E+14

0 200 400 600 800 1000 1200

T
im

e
 in

 m
in

u
te

s

E
st

im
a

te
d

 C
o

st

Search Space

Exhaustive Greedy Cost Exhaustive Greedy Time

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 135

B. Greedy Particle Swarm Optimization

(GPSO)

A hybrid of the heuristic greedy search and
intelligent particle swarm optimization is proposed
as a new algorithm to overcome the trapping into
local optimum states away from global ones. We
call this algorithm Greedy Particle Swarm
Optimization (GPSO).

Figure 5 depicts the idea of the proposed GPSO
algorithm. The main idea is that the GPSO
algorithm uses PSO technique to tune the share
parameter of the greedy algorithm. Whereas the
greedy module enumerates resource allocations for
the VMs based on the estimated cost of the given
workloads, the PSO module sends to the greedy
module candidate shares and VM configurations
and receives updated VM configurations and the
corresponding estimated cost for these
configurations.

In this setting, the particles of the PSO module
hold candidate values for the share parameter, and
the dimensions represent the number of resources.
The effect of the GPSO algorithm is achieved by
iteratively running the heuristic greedy algorithm
with a new share computed using PSO. In each
iteration, the heuristic greedy is started from the
last solution (the configuration of the global best)
reached in the previous iteration, which is
considered as a local optimum. The GPSO
algorithm has been implemented in the VDA
enumerator (search) module. To evaluate each
particle (share parameter value), the total of
estimated costs is calculated using input workloads
under candidate VM configuration as described in
Eq.3. The total estimated cost serves as the fitness
function for PSO.

The GPSO algorithm steps are as follows:

1) Initially, equal allocation of each resource is
assumed as the initial configuration for all

VMs (1/N of each resource is allocated to each
VM).

2) The fitness function is defined to minimize the
cost as described in Eq. 3, and then the
positions (share values) of the particles are
chosen randomly. The search space includes
all the possible fractions except the fractions
that cause a resource allocation that is either
greater than the maximum allocation (100%)
or less than the minimum allocation (0%).
These constraints reduce error occurrence and
can be described by the following:

F� ���� − �ℎ��& > 0

F�C���� + �ℎ��& < 100

Moreover, the search space boundaries
�IJ�0, IJKL�

M are restricted in [0.001, 0.1].
This restriction means that each share
parameter can be any value between 0.1% and
10%. In this work, only one resource, CPU, is
used (i.e., one-dimensional vectors for
particles), and thus, GPSO is used to find a
best particle (share value) to tune CPU
allocation	I = �C�, C�, , C0�.

3) GPSO operates then in iterations. Iteratively,
each particle evaluates its position by running
the greedy algorithm and determines its
personal best position. The global best share
and VM configuration are then determined.
The initial VM configuration of the greedy
algorithm for each particle is the VM
configuration which was tuned by the global
best particle of the previous iteration. Each
particle then updates its own velocity using its
previous velocity, the inertia weight, its
previous position, its personal best position,
and best particle in terms of fitness in the
entire population (global best position). Each
particle then uses the calculated velocity to
adjust its new position.

4) After the iterations terminate, the configuration
of the best particle so far is output as the final
VM configuration R.

VI. EXPERIMENTAL EVALUATION

In this section, we present our experimental

evaluation of the proposed GPSO algorithm. We

start by describing the experiment setup and used

 Fig.5 GPSO in VDA Enumerator Module

Resource allocation Share value Estimated cost

PSO

Greedy Heuristic

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 136

metrics. Then, an experiment to tune GPSO’s

swarm size is presented, followed by an

experiment to show GPSO responsiveness to

identical workloads. The ability of GPSO to

escape from local minima is then demonstrated

using an experiment, its responsiveness to

variation of resource-intensiveness of workloads

is demonstrated, and its speed is measured.

Finally, a comparative study between GPSO and

an exhaustive version of the greedy algorithms is

described.

A. Experiment Setup

In our experiments we use PostgreSQL 8.4.8 as
the DBMS running on a machine with Core2
Duo® T5870 2.00 GHz processor, 4 GB memory,
and CentOS 5.5 operating system. The virtual
machine monitor used was Xen in its para-
virtualization mode [35, 36]. By using Xen, we
aim at mimicking at a very high granularity the
Amazon EC2 cloud, which uses Xen virtualization
as well.

In order to evaluate the effectiveness of the
proposed GPSO algorithm, the TPC-H benchmark
(with scale factor 1.0) is used to compare GPSO
with the greedy search algorithm [7, 12, 37].

Our experiments compare the greedy search
algorithm [2] to our proposed GPSO algorithm for
allocating the CPU resource. Only the CPU-related
parameters of PostgreSQL, namely cpu_tuple_cost
and cpu_operator_cost, were calibrated. All
experiments were done on a warm database. Each
experiment was repeated ten times and averages
are reported.

The share parameter, which is controlled by the
PSO part of GPSO, has an upper bound of 10%.
The size of the search space of the proposed GPSO
algorithm is set to either 100 or 1000 points. Each
point in search space represents a value of the
share parameter, which is used as a controller of
the greedy heuristic algorithm. When the finest
granularity of change is one tenth (0.1), a search
space of 100 is in effect, which corresponds to the
share values from 0.1 to 10. When the share ranges
from 0.01 to 10 with a granularity of 0.01, a search
space of 1000 points is created.

The GPSO algorithm was implemented in
JAVA. This work focuses on one resource (the

CPU), and thus, the particles in PSO has a single
dimension. The input to the program is the number
of shares. For the purpose of the experiment, the
share parameter is initially randomly generated.
The GPSO algorithm was set to terminate after
reaching 50 iterations or when the incremental
change in the total estimated cost across iterations
becomes constant for five consecutive iterations.
The greedy algorithm starts with equal allocations
for all VMs and with a share parameter of (5%)
[2].

In GPSO algorithm, the coefficients of PSO
component, r1 and r2, are generated randomly, c1
= c2 = 2, and a constant momentum factor, mc =
0.3, is adopted. The PSO component has a
gradually decreasing inertia weight factor. The
inertia factor w decreases linearly between 0.9 and
0.4 as in the following equation [32]:

B = �BJKL − BJ�0� ×
�OPQRSTUVOPQRWXY�

OPQRSTU
+BJ�0 (10)

where Itermax is the maximum number of PSO

iterations, Iternow is the current number of

iterations in the running PSO, wmaxwZ[\ is the

maximum inertia value, which equals 0.9, and

wminwZ<] is the minimum inertia value, which

equals 0.4.

B. Performance Metrics

Four metrics were used to measure performance:

1) The total estimated cost of workloads (in terms
of sequential page fetches) as estimated by the
query optimizer of PostgreSQL for default
configurations, greedy heuristic search
algorithm configurations, exhaustive greedy
algorithm configurations, and GPSO algorithm
configurations.

2) Cost improvement, which measures relative
performance [7, 24]. In this work, using two
algorithms (greedy and GPSO), the formula
for cost improvement is as follows:

��#�
?&�& � =
^_`PabccdeV^_`Pafgh

^_`Pabccde
(11)

where CostGreedy and CostGPSO are the total
estimated cost under greedy and GPSO
configurations, respectively.

3) Normalized cost improvement measures the
amount of improvement in cost per unit of

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 137

running time. It is computed as the ratio
between cost improvement and the average
running time (in seconds) of the search
algorithm (either greedy or GPSO).

���+�i&%_��#�
?&�& � =
�JjR_kQJQ0P

Kkl�Rm0P�JQ�
(12)

4) Runtime overhead measures relative runtime
as follows:

�n ���&_
?&�ℎ&�% =
oafghVoabccde

oafgh
 (13)

where pqrst and pqRQQ@u are the total

runtime of GPSO and greedy algorithms,
respectively.

C. GPSO Experiments

We start by describing a set of experiments on the

proposed GPSO algorithm.

1) GPSO Tuning

 The size of the swarm in the PSO module of
the GPSO algorithm was varied within the range
[10-100] for two different workloads running on
two VMs. Figure 6 plots the total estimated cost
for all the ten experiments for different swarm
sizes. It shows that the variation in total estimated
cost decreases with increasing swarm size. In
order to obtain a handle on the optimal swarm
size, the normalized cost improvement (per unit of
running time) was measured as will be discussed
next.

The GPSO algorithm performance was evaluated
by varying the swarm size within two search
spaces, [0.01%-10%] and [0.1%-10%], to examine
the characteristics of optimal swarm sizes. Figure
7 depicts the normalized cost improvement versus
swarm size with two virtual machines.

According to the results in Figure 7, the highest
normalized cost was reached with a search space
of 100 points and a swarm size of 10. As a result,
the following experiments used the 100-point
search space with a swarm size of 10.

2) Identical workloads receive equal
shares

The aim of this experiment is to verify that the
GPSO algorithm equally partitions the shared CPU
resource when the workloads are identical.
Although the GPSO algorithm changed the value
of the share parameter (from its initial value of

5%), the allocations and corresponding estimated
cost did not change.

 Figure 8 shows the estimated costs for up to
10 VMs that run identical copies of TPC-H Q1
query workloads. The graph plots the estimated
costs reached by the greedy, GPSO, and the
default configuration (equal allocations).

Fig. 6 Effect of swarm size on total estimated cost for two VMs.

Fig. 7 Effect of swarm size on normalized cost improvement for two
search spaces. Number of VMs = 2.

3) GPSO Escaping from local minimum

In this experiment, random TPC-H workloads
were used. Twenty queries were generated using
the same method described in [7]. Each workload
consisted of a random combination of between 10
and 20 workload units. A workload unit can be
either 1 copy of TPC-H query Q17 or 66 copies of
a modified version of TPC-H query Q18 [7]. Each
VM had one workload. Each algorithm started

8.27E+13

8.32E+13

8.37E+13

8.42E+13

8.47E+13

8.52E+13

8.57E+13

8.62E+13

E
st

im
a

te
d

 C
o

st

(
S

e
q

u
e

n
ti

a
l

P
a

g
e

 F
e

tc
h

e
s)

10swarms 20swarms 30swarms

40swarms 50swarms 100swarms

0.000

0.002

0.004

0.006

0.008

0.010

0.012

10 30 50 70 90

N
o

rm
a
liz

e
d
 c

o
s
t

im
p
ro

v
e

m
e
n
t

Swarm Size

Cost Improvement per time unit (Search Space=100Points(

Cost Improvement per time unit (Search Space=1000Points(

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 138

with 2 VMs and increased by 1 VM until it
reached 20 VMs.

Fig. 8 Cost for identical workloads.

Figure 9 shows the total estimated costs for the
two algorithms as compared to the default equal
allocation. The estimated cost obtained by the
GPSO algorithm was consistently lower than the
estimated cost obtained by the greedy algorithm.
In other words, the GPSO algorithm outperformed
the greedy algorithm with respect to estimated
cost. Figure 9 also shows that the cost
improvement ratio fluctuated with the number of
workloads with the most obvious change when
moving from 19 to 20 workloads. At 20
workloads, the cost improvement decreased.

Figure 10 plots the same results as in Figure 9
with the cost improvement superimposed. It is
noted that the greatest improvement happened
when the greedy algorithm had a local optimum at
19 workloads. The greedy algorithm could not
improve the resource allocation and stopped in the
initial configuration (default configuration),
whereas the GPSO algorithm was able to escape
the local optimum by using another share value.

4) Responsiveness to varying CPU
intensiveness

Figure 11 illustrates the varying CPU-

intensiveness of workloads W1- W10 and the
responsiveness of GPSO to their characteristics.
GPSO was able to reallocate the CPU as new
workloads jumped in. The fourth workload (W4)
was non CPU-intensive and GPSO allocated to it
the minimum CPU share. The eighth workload

(W8) had the maximum CPU share, and it was a
CPU-intensive workload.

Fig. 9 Cost comparison for up to 20 random workloads.

Fig. 10 GPSO cost improvement over greedy algorithm for up to 20

random workloads.

5) Runtime overhead of GPSO

Figure 12 shows the runtime overhead of GPSO.
It shows that the GPSO algorithm was slower than
the greedy algorithm. Also, it is noticed that the
variation in GPSO runtime was due to the
characteristics of the workloads not to the number
of workloads alone.

Summary: According to our results, the GPSO
algorithm achieved better allocations in terms of
total cost at the expense of longer runtime. Since
the distribution of shared resources is considered
an off-line process in VDA, the GPSO algorithm
is acceptable for obtaining near optimal
configurations for VMs.

0. E+00

1. E+10

2. E+10

3. E+10

4. E+10

5. E+10

6. E+10

7. E+10

8. E+10

2 3 4 5 6 7 8 9 10

E
s
ti
m

a
te

d
 C

o
s
t

Number of Workloads

Default Greedy (5%(GPSO

0.0E+00

2.0E+15

4.0E+15

6.0E+15

8.0E+15

1.0E+16

1.2E+16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
st

im
a

te
d

 C
o

st

Number of Workloads

Default Greedy(5%(GPSO

0%

2%

4%

6%

8%

10%

12%

14%

16%

0.0E+000

2.0E+015

4.0E+015

6.0E+015

8.0E+015

1.0E+016

1.2E+016

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Im
p

ro
v

m
e

n
t

o
v
e

r
G

re
e

d
y

E
st

im
a

te
d

C

o
st

Number of Workloads

GPSO Greedy(5%(improvement over Greedy

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 139

Fig. 11 CPU allocation for 10 workloads using GPSO.

Fig. 12 Runtime overhead of GPSO (compared to greedy).

D. Comparative Study ofthe GPSO

Algorithm

In this subsection, we present our comparative

evaluation of the proposed GPSO algorithm

against an exhaustive version (EG) of the greedy

algorithm, which was described in Subsection D.

1) Estimated Cost

In this experiment, random TPC-H workloads

were used. Fifteen queries were generated using
the same method described in 3). The EG
algorithm was compared to the default equal

allocations, greedy algorithm which used 5% as
share value, and the proposed GPSO algorithm.
The EG algorithm with 50 iterations outperformed
the other algorithms as shown in Figure 13. The
EG algorithm was able to reduce the estimated
cost even further by increasing the number of
iterations to 100 as depicted in Figure 14.
However, the EG algorithm suffers from an
exponentially increasing running time with
increasing problem size.

Fig. 13 Comparing GPSO, greedy, exhaustive greedy with 50 iterations,

and default allocation w.r.t estimated cost.

Fig. 14 Comparing GPSO, greedy, exhaustive greedy with 100 iterations,

and default allocation w.r.t estimated cost.

2) Running Time

Figure 15 shows the runtime overhead of the
compared algorithms. It shows that the EG
algorithm was faster than the GPSO algorithm.

0E+00

5E+14

1E+15

2E+15

2E+15

3E+15

3E+15

0%

10%

20%

30%

40%

50%

60%

70%

2 3 4 5 6 7 8 9 10

E
s
ti
m

a
te

d
 C

o
s
t

(S
e
q
u

e
n
ti
a
l
P

a
g
e

 F
e

tc
h
)

C
P

U
 A

llo
c
a
ti
o
n

Number of Workloads

w1 w2 w3

w4 w5 w6

w7 w8 w9

w10 Estimated Cost

Non CPU-intensive Workload (W4)

CPU-intensive (W8)

99.2%

99.3%

99.4%

99.5%

99.6%

99.7%

99.8%

99.9%

100.0%

0

1000

2000

3000

4000

5000

6000

7000

8000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

O
v

e
rh

e
a

d
 (

w
.r

.t
 g

re
e

d
y

)

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Workloads

Greedy Runtime GPSO Runtime overhead

0E+00

1E+15

2E+15

3E+15

4E+15

5E+15

6E+15

7E+15

2 5 10 15
E

st
im

a
te

d
 C

o
st

No. of Workloads

Default Greedy Cost (5%(Exhaustive Greedy GPSO Cost

0E+00

1E+15

2E+15

3E+15

4E+15

5E+15

6E+15

7E+15

2 5 10 15

E
st

im
a

te
d

 C
o

st

No of Workloads

Default Greedy(5%(Exhaustive Greedy GPSO

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 140

However, as noted in Subsection D, when search
space grows in size, the running time of the EG
algorithm grows exponentially. This trend is
confirmed in the next experiment.

3) Search Space Size
The running time of the EG algorithm is more

severely affected by search space size than the
proposed GPSO. According to Figure 16, when
the search space of the share values grows, the
running time of the EG algorithm increased much
faster than the proposed GPSO algorithm.

Fig. 15 Comparing GPSO, greedy, exhaustive greedy with 50 iterations,

and default allocation w.r.t running time.

Fig. 16 The runnimg time of the exhaustive greedy algorithm grows much
faster than GPSO with increasing search space size.

VII. CONCLUSIONS AND FUTURE WORK

This work builds on and improves the Virtual
Design Advisor, a framework for resource
partitioning of physical machine resources among

guest virtual machines running different database
workloads. Our contribution is a search algorithm,
namely GPSO, which is a hybrid between particle
swarm optimization and greedy search. The
proposed GPSO is motivated by the effect of the
share parameter of the greedy algorithm on the
feasibility and speed of convergence to an optimal
configuration. Thus, the Exhaustive Greedy search
algorithm studies the effectiveness of tuning the
allocation of the shared resources and the effect of
the share values of resources on the feasibility and
speed of reaching an optimal solution. In other
words, EG search algorithm benefits from using a
share parameter value that is large, and thus allows
for fast convergence, and at the same time gives a
result that is as good as with smaller and slower-
converging shares.

Using experiments with TPC-H benchmark on
PostgreSQL database, we found that our GPSO
algorithm was able to escape from local minima
that otherwise trapped the greedy algorithm. Also,
EG search algorithm was faster than the GPSO
algorithm when the search space of the share
values grows.

This work can be extended on many fronts: by
considering other resources, such as I/O and
network bandwidth, by incorporating QoS to
provide more flexibility and control (e.g.,
integrating a penalty to reflect the cost of SLA
violation), and by upgrading the PSO fitness
function with a weighted factor of cost and time to
strike a flexible balance between performance and
speed.

References

[1] L. C. Qi Zhang, Raouf Boutaba, "Cloud computing: state-of-the-

art and research challenges " Journal of Internet Services and

Applications, vol. 1, No. 1, pp. 7-18, May 2010.

[2] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P.

Kokosielis, and S. Kamath, "Deploying Database Appliances in
the Cloud.," IEEE Data Eng. Bull., vol. 32, No. 1, pp. 13-20,

2009.

[3] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,

"Mars: a MapReduce framework on graphics processors," in

Proceedings of the 17th international conference on Parallel

architectures and compilation techniques, 2008, pp. 260-269.
[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, "Xen and the art of
virtualization," in Proceedings of the nineteenth ACM symposium

on Operating systems principles, Bolton Landing, NY, USA,

2003, pp. 164-177.

[5] C. Computing. (2010). Handbook of Cloud Computing.

Available: http://www.springerlink.com/index/10.1007/978-1-

4419-6524-0

0

10

20

30

40

50

60

70

0 5 10 15 20

T
im

e
 i

n
 m

in
u

te

NO of Workloads

Greedy(5%(Exhaustive Greedy GPSO

0

4

8

12

16

20

1.0172467E+14

1.0172469E+14

1.0172471E+14

1.0172473E+14

1.0172475E+14

1.0172477E+14

0 200 400 600 800 1000 1200

T
im

e
 in

 m
in

u
te

s

E
st

im
a

te
d

 C
o

st

Search Space

Exhaustive Greedy Cost GPSO Cost

Exhaustive Greedy Time GPSO Time

International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 141

[6] A. A. Soror, A. Aboulnaga, and K. Salem, "Database

Virtualization: A New Frontier for Database Tuning and Physical
Design," in Proceedings of ICDE Workshops (SMDB 2007),

2007, pp. 388-394.

[7] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P.

Kokosielis, and S. Kamath, "Automatic virtual machine

configuration for database workloads," in Proceedings of ACM

SIGMOD International Conference on Management of Data

(SIGMOD'08), Vancouver, Canada, 2008, pp. 953-966.

[8] R. Sahal, S. M. Khattab, and F. A. Omara, "Automatic

calibration of database cost model in cloud computing," in
Informatics and Systems (INFOS), 2012 8th International

Conference on, 2012, pp. CC-25-CC-34.

[9] S. M. K. Radhya Sahal, Fatma A. Omara, "GPSO: An improved

search algorithm for resource allocation in cloud databases," in

Computer Systems and Applications (AICCSA), 2013 ACS

International Conference on, 2013, pp. 1-8.
[10] F. A. Omara, S. M. Khattab, and R. Sahal, "Optimum Resource

Allocation of Database in Cloud Computing," Egyptian

Informatics Journal, vol. 15, pp. 1-12, 2014.

[11] ([Apr.16, 2012 6:30 PM]). PostgreSQL 8.3.18 Documentation.

Available: http://www.postgresql.org/docs/8.3/static/plpgsql.html

[12] (2001, 9-11-2011 1:29AM). TPC-H Homepage. Available:
http://www.tpc.org/tpch/

[13] (2012, 7-11-2012). What is Cloud Bursting. Available:

http://searchcloudcomputing.techtarget.com/definition/cloud-

bursting

[14] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.
Merchant, and K. Salem, "Adaptive control of virtualized

resources in utility computing environments," in Proceedings of

the 2nd ACM SIGOPS/EuroSys European Conference on

Computer Systems, Lisbon, Portugal, 2007, pp. 289-302.

[15] P. a. L. Mitran, Long and Rosenberg, Catherine and Girard,

André, "Resource Allocation for Downlink Spectrum Sharing in
Cognitive Radio Networks," in Proceedings of the VTC Fall,

2008, pp. 1-5.

[16] G. Soundararajan, D. Lupei, S. Ghanbari, A. D. Popescu, J.

Chen, and C. Amza, "Dynamic resource allocation for database

servers running on virtual storage," in Proccedings of the 7th

conference on File and storage technologies, San Francisco,
California, 2009, pp. 71-84.

[17] D. Narayanan, E. Thereska, and A. Ailamaki, "Challenges in

building a DBMS Resource Advisor," IEEE Data Eng. Bull., vol.

29, pp. 40-46, 2006.

[18] A. Skelley, "DB2 Advisor: An Optimizer Smart Enough to

Recommend its own Indexes," in Proceedings of the 16th

International Conference on Data Engineering, 2000, p. 101.

[19] T. C. Air Force Inst of Tech Wright-Patterson AFB OH and

Shrum, Calibration and Validation of the Checkpoint Model to

the Air Force Electronic Systems Center Software Database:

Storming Media, 1997.

[20] S. S. u. Weihua Sheng, Maximilian Odendahl, Rainer Leupers,

Gerd Ascheid, "Automatic calibration of streaming applications

for software mapping exploration," in Proceedings of the

International Symposium on System-on-Chip (SoC), 2011, pp.
136 - 142.

[21] J. Rogers, O. Papaemmanouil, and U. C. W. Dietrich, "A generic

auto-provisioning framework for cloud databases," in

Proceedings of the ICDE Workshops, 2010, pp. 63-68.

[22] H. G. a. M. Pedram, "Maximizing Profit in Cloud Computing

System via Resource Allocation," Distributed Computing

Systems Workshops, International Conference vol. 0, pp. 1-6,

2011.

[23] H. G. a. M. Pedram, "Multi-dimensional SLA-Based Resource
Allocation for Multi-tier Cloud Computing Systems," in Cloud

Computing, IEEE International Conference on Cloud

Computing, Los Alamitos, CA, USA, 2011, pp. 324-331.

[24] S. Kong, Y. Li, and L. Feng, "Cost-Performance Driven

Resource Configuration for Database Applications in IaaS Cloud

Environments," in Cloud Computing and Services Science, I.
Ivanov, M. van Sinderen, and B. Shishkov, Eds., ed: Springer

New York, 2012, pp. 111-129.

[25] J. K. a. R. Eberhart, "Particle swarm optimization," in IEEE

International Conference on Neural Networks, 1995, pp. 1942-
1948.

[26] C. L. a. S. Yang, "Fast multi-swarm optimization for dynamic

optimization problems," in Proceedings of the Fourth

International Conference on Natural Computation 2008, pp.

624-628.

[27] A. Carlisle and G. Dozier, "Adapting Particle Swarm

Optimization to Dynamic Environments," in Proceedings of the

International Conference on Artificial Intelligence (ICAI), ,

2000, pp. 429-434.
[28] F. v. d. Bergh and A. P. Engelbrecht, "A Cooperative approach to

particle swarm optimization," Trans. Evol. Comp, vol. 8, pp. 225-

239, 2004.

[29] T. Blackwell, "Particle swarm optimization in dynamic

environments," in Evolutionary Computation in Dynamic and

Uncertain Environments, S. Yang, Y.-S. Ong, and Y. Jin, Eds.,
ed: Springer Berlin Heidelberg, 2007, pp. 29-49.

[30] Y. S. a. R. Eberhart, "A modified particle swarm optimizer.," in

Proceedings of IEEE International Conference on Evolutionary

Computation,, 1998, pp. 69-73.

[31] Y. LIU, Z. QIN, and X. HE, "Supervisor-student model in

particle swarm optimization," IEEE Congress on Evolutionary

Computation (CEC), vol. 1, pp. 542-547, 2004.

[32] C. Jun-yi and C. Bing-gang, "Design of Fractional Order

Controllers Based on Particle Swarm Optimization," in

Proceedings of the Industrial Electronics and Applications, 2006

1ST IEEE Conference, 2006, pp. 1-6.
[33] X. Tao, W. Jun, and L. Xiaofeng, "An improved particle swarm

optimizer with momentum," in Proceedings of the IEEE

Congress on Evolutionary Computation (CEC 2007), 2007, pp.

3341-3345.

[34] R. Jinxia and Y. Shuai, "A Particle Swarm Optimization

Algorithm with Momentum Factor," in Proceedings of the

Computational Intelligence and Design (ISCID), 2011 Fourth

International Symposium on, 2011, pp. 19-21.

[35] R. Rose, Survey of System Virtualization Techniques. Lisbon,

Portugal: Theses (Electrical Engineering and Computer Science)

MS non-thesis Research Papers (EECS), 2004.

[36] D. E. Williams, Virtualization with Xen: Including

Xenenterprise, Xenserver, and Xenexpress: Syngress Publishing,

2007.

[37] S. W. Dietrich, M. Brown, E. Cortes-Rello, and S. Wunderlin, "A

practitioner's introduction to database performance benchmarks

and measurements," Comput. J., vol. 35, pp. 322-331, 1992.

