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Abstract: 
 

The Virtual Design Advisor (VDA) has addressed the problem of optimizing the performance of Database 

Management System (DBMS) instances running on virtual machines that share a common physical 

machine pool.  In this work, the search algorithm in the optimization module of the VDA is improved. An 

Exhaustive Greedy algorithm (EG) studies the effectiveness of tuning the allocation of the shared 

resources (the share values); and presents a mathematical analysis of the effect of the share values on 

reaching an optimal solution. Also, it studies the effect of the share values of resources on the feasibility 

and speed of reaching an optimal solution. On the other hand, the particle swarm optimization (PSO) 

heuristic is used as a controller of the greedy heuristic algorithm to reduce trapping into local optima. Our 

proposed algorithm, called Greedy Particle Swarm Optimization (GPSO), was evaluated using prototype 

experiments on TPC-H benchmark queries against PostgreSQL instances in Xen virtualization 

environment. Our results show that the GPSO algorithm required more computation but in many test cases 

succeeded to escape local optima and reduce the cost as compared to the greedy algorithm alone. Also, the 

EG search algorithm was faster than the GPSO algorithm when the search space of the share values grows. 

 

Keywords: - Virtualization, Resource Allocation, Particle Swarm Optimization, Greedy Search, 
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I. INTRODUCTION 

Cloud computing allows users to use 

computational resources and services of data 

centers (i.e., machines, network, storage, 

operating systems, application development 

environments, application programs) over the 

network to deploy and develop their applications 

[1]. The main feature of cloud computing is 

providing self-service provisioning, which allows 

the users to deploy their own sets of computing 

resources [2].  

Cloud computing relies on virtualization to 

partition and multiplex physical machine 

infrastructure [4]. A virtual machine 

configuration or resource allocation controls the 

sharing of physical resources allocated to VMs. 

The problem of optimizing the performance of 

the virtualized applications (i.e., the applications 

that run on VMs) is critical to the success of 

cloud computing, and indeed VM configuration 

affects application performance [2, 5].  

 

Database Management Systems (DBMS) are 

important consumers of cloud resources. the 

Virtualization Design Problem (VDP) studies 

how DBMS instances can get a resource 

allocation for each VM out of the shared physical 

pool [6, 7]. The Virtual Design Advisor (VDA) is 

a technique that offers a solution for the VDP 

problem. It provides recommended 

configurations for multiple VMs running 

different workloads over shared physical 

resources.  VDA explores the characteristics of 

workloads to distinguish their resource-

sensitivity (e.g., CPU-intensive or I/O-intensive) 

and makes a decision for the best resource 

allocation for VMs that run the workloads. VDP 
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is considered as a search problem to minimize the 

allocation cost of virtualized resources for 

database systems in cloud environment [2, 6, 7].  

Whereas our previous works focused on 

automating the manual calibration process for 

tuning parameters of DBMS query optimizer and 

introduced search algorithm to improve the 

resource allocation in cloud databases [8-10]. In 

this work, an Exhaustive Greedy algorithm (EG) 

will be introduced for studying the effectiveness 

of tuning the allocation of the shared resources 

(the share values); and for presenting a 

mathematical analysis of the effect of the share 

values on reaching an optimal solution. Also, it 

will study the effect of the share values of 

resources on the feasibility and speed of reaching 

an optimal solution. In other words, EG search 

algorithm would benefit from using a share 

parameter value that is large, and thus allows for 

fast convergence, and at the same time gives a 

result that is as good as with smaller and slower-

converging shares. 

On the hand, we propose a search algorithm, 

namely Greedy Particle Swarm Optimization 

(GPSO), as a hybrid between two heuristics: 

greedy and particle swarm optimization. Particle 

Swarm Optimization (PSO) is an evolutionary 

algorithm that explores the search space of a 

given problem to find optimal or near-optimal 

solutions for maximization and minimization 

search problems. Although, there are a wide 

variety of search techniques such as Genetic 

Algorithm (GA), Tabu Search (TS), Simulated 

Annealing (SA), and the Evolution Strategy (ES), 

the PSO algorithm is considered simple in 

concept, easy to implement, and computationally 

efficient [9].  

The goal of the proposed GPSO algorithm is to 

optimize resource configurations based on the 

workload profile in virtualized environments. 

The GPSO algorithm has been implemented in 

the VDA enumerator module. To evaluate our 

proposed GPSO algorithm, experiments have 

been conducted to allocate the CPU resource 

over virtual machines. Tests have been 

performed using PostgreSQL 8.4.8, running 

TPC-H benchmark queries as workloads [11, 12].  

The results show that the GPSO algorithm can 

provide effective configurations for different 

types of workloads. 

The combination of the proposed GPSO 

algorithm with a profiling technique that 

classifies workloads characteristics in terms of 

resource consumption (e.g., CPU, Memory, and 

I/O) gives an insight into the resource intensivity 

of workloads. This insight can guide the cloud 

provider to allocate an appropriate amount of 

resources to incoming workloads. The provider 

can arrange the workloads over multiple pools 

based on resource requirements or use cloud 

bursting to maintain strict SLA even when some 

incoming workloads are heavily resource-

intensive. Cloud bursting is an application 

deployment model in which an application that 

runs in a private cloud or data center bursts into a 

public cloud when the demand for computing 

capacity spikes [13] The advantage of such a 

hybrid cloud deployment is that an organization 

only pays for extra compute resources when they 

are needed The proposed GPSO algorithm can be 

run periodically or on policy-defined events to 

capture the variation of the dynamic workloads. 

The rest of this paper is organized as follows. 

Related work is described in Section II. The 

optimization problem addressed in this work is 

described in Section III. Section IV and Section V 

motivate and describe the key idea of the 

proposed algorithm. An experimental evaluation 

is presented in Section VI. Finally, conclusions 

and future work are in SectionVII. 

II. RELATED WORK 

A significant amount of research has been 
conducted in the fields of performance 
optimization of applications running in virtualized 
environments [7, 14] and resource allocation [15, 
16].  

A highly-related problem to the work of this 
paper is the virtualization design problem [6, 7], 
which addresses the question of how to optimally 
(with respect to application throughput) partition 
the resources of a physical  machine over a 
number of VMs, each running a potentially 
different database appliance. In [7], the virtual 
design advisor was presented to solve the 
virtualization design problem by using the query 
optimizer, which is typically built-in in most 
DBMSs, as a cost model to evaluate potential 
resource partitioning configurations.  

This “what-if” usage of the DBMS query 
optimizer has also been used in non-virtualized 
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environments to justify upgrades of resources 
based on the predictions of the expected 
improvement in workload performance [17, 18]. 
In [2], the virtual design advisor has  been used to 
optimize the performance of database appliances 
that were deployed in the Amazon EC2 cloud.  

Performance model calibration is an important 
task in many performance optimization problems 
[7, 19, 20]. Automating tedious calibration 
processes is of great benefit to the overall 
optimization framework. The Automatic 
Calibration Tool (ACT) has been proposed in our 
previous work to automate the calibration process 
of the DBMS query optimizer within the virtual 
design advisor [8]. 

The virtual design advisor employs a white-box 
approach for modeling the performance of the 
DBMS [7]. On the other hand, the black-box 
approach for performance modeling has been 
used in [14] to drive an adaptive resource control 
system that dynamically adjusts the resource 
share of each tier of a multi-tier application within 
a virtualized data center. The two approaches, 
black-box and white-box, also were used to solve 
resource-provisioning problem for DBMS on the 
top of  IaaS cloud [21].  

Resource allocation is an important challenge 
that faces cloud computing providers regardless 
of the hierarchy of services; especially, the 
question of how the cloud provider can meet the 
clients’ Service Level Agreements (SLAs) and 
maximize total profit is of particular interest. 

 In [22, 23], the SLA-based resource allocation 
problem for multi-tier cloud applications is 
considered for a distributed solution for each of 
processing, data storage, and communication 
resources. The problem is cast as a three-
dimensional optimization problem.  

The cost-performance tradeoff in cloud IaaS 
was addressed in [24]. The problem was 
formulated as a multi-objective optimization. The 
proposed model was built based on a fine-grained 
charging model and a normalized performance 
model. The solution used genetic algorithms, and 
the experimental results proved the effective of 
the proposed model. 

On the other hand, there is a wealth of proposed 
approaches using the Particle Swarm 
Optimization (PSO) heuristic technique in various 
domains in general and in dynamic environments 
in particular. Basically, PSO is an optimization 

technique for static environments [25]. In the real 
world, however, many applications pose non-
stationary optimization problems; they are 
dynamic, meaning that the environment and the 
characteristics of the global optimum can change 
timely. Several successful PSO algorithms have 
been developed for dynamic environments. PSO 
has to adapt its ability to improve and track the 
trajectory of the changing global best solution in a 
dynamic environment.  

One of these algorithms is fast multi-swarm 
optimization (FMSO) [26]. It uses two types of 
swarm: one to detect the promising area in the 
whole search space and the other as a local search 
method to find the near-optimal solutions in a 
local promising region in the search space.  

Another approach is used to adapt PSO in 
dynamic environments [27]. It is based on 
tracking the change of the goal periodically. This 
tracking is used to reset the particle memories to 
the current positions allowing the swarm to track 
a changing goal with minimum overhead [27]. 

Cooperative Particle Swarm Optimizer (CPSO) 
was introduced for employing cooperative 
behavior to significantly improve the performance 
of the original PSO algorithm [28]. This is 
achieved by using multiple swarms to optimize 
different components of the solution vector 
cooperatively. While the original PSO uses a 
population of D-dimensional vectors, CPSO 
partitions these vectors into D swarms of one-
dimensional vectors, each swarm representing a 
dimension of the original problem. This work 
proposes an algorithm, called greedy particle 
swarm optimization (GPSO), to optimize the 
allocation of shared resources to minimize 
estimated cost and enhance VM configuration. By 
devising a profiling technique to obtain statistical 
models that deal with different workloads 
behavior, an intelligent resource provisioning can 
be achieved to adapt to dynamic workloads to any 
application workload. 

III. RESOURCE ALLOCATION PROBLEM 

This section is dedicated to discuss the 
virtualization design problem (VDP) and to 
illustrate the virtual design advisor (VDA) 
solution [6, 7]. 

A. Virtualization Design Problem (VDP)  

In the virtualization design problem (VDP), N 

VMs run on a shared physical machine pool and 
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each VM runs its own instance of a DBMS. The 

shared physical pool is represented by M 

different resources. Each VMi has a workload, Wi.  

The VDP raises the question: “What fraction rij 

of each shared physical resource j should be 

allocated to each VMi in order to optimize the 

overall performance of the workloads Wi?” [6-8]. 

The set of allocated resource shares to the ith VM 

can be represented as a vector: 
� = 	 ���, ��, … , �
�(1)  

For example, consider three shared resources: 
CPU, memory, and I/O, that is, M=3. An 
allocation of 50% CPU, 30% memory, and 25% 
I/O to VM1 results in the vector   R1= [0.5, 0.3, 
0.25]. 

We assume that each workload Wi results in a 
cost (e.g., running time) under resource allocation 
Ri.  This cost is represented by:  

�
�����, ���                (2) 

The total cost for all workloads is represented by:      

					Cost�ℛ� = ∑ �
�����, ���
�
���                    (3) 

The objective of the VDP is getting an 
appropriate resource allocation to minimize the 
overall cost for all workloads, that is, to find: 

����� �!
���ℛ��      (4) 

The estimated cost reflects application 
performance. The work in this paper considers 
only the CPU resource. The VDP was defined and 
a solution was presented in [6, 7]. The next 
section explains in detail the virtual design 
advisor as a solution for the VDP. 

B. Virtual Design Advisor (VDA) 

The architecture and design of the Virtual 
Design Advisor (VDA), which was introduced as 
a solution for the virtualization design problem, is 
shown in Figure 1 [7]. The VDA is divided into 
two modules: configuration enumeration, which 
includes the search algorithm, and cost model. 
The modules interact to make recommended 
configurations using a calibration process, an 
automation of which was proposed in our 
previous work [8]. The calibration model tunes 
the cost model parameters according to each 
enumerated configuration. A brief description of 
both modules is presented next. 

1)  Configuration Enumeration Module 
The configuration enumeration module 

enumerates resource allocations for the VMs. It 

implements a search algorithm, such as greedy 
search and dynamic programming, for 
enumerating and searching candidate resource 
allocations [7]. The greedy algorithm makes the 
decisions of increasing and decreasing the 
resources allocated to VMs based on the 
estimated cost of the given workloads.  

2) Cost Model 
  The VDA tunes the cost model of the DBMS 

query optimizer to reflect a VM with a certain 

resource allocation. This tuning is done by setting 

appropriate values for the  query optimizer 

parameters. The query optimizer in a DBMS 

estimates the cost of an execution plan of a given 

SQL workload (Wi) on a DBMS instance (Di) 

using the following vector of optimizer tuning 

parameters: 

"� =	 �#��, #��, … , #�$�                                  (5) 

 

Fig. 1: Virtualization Design Advisor (VDA) Architecture. 

 

3) Calibration  
 In VDA, calibration is a process to map each 

resource allocation into a corresponding set of 
values of the query optimizer's tuning parameters. 
This process uses a calibration model that is 
constructed as a set of calibration equations [7, 8]. 
The query optimizer becomes aware of the 
virtualized environment it runs in, and chooses an 
optimal execution plan by estimating and 
comparing the costs of a set of plans based on the 
given resource allocation [8]. 

C. Optimization Problem in VDA  

The search algorithm in the Virtual Design 
Advisor uses the calibration process to enumerate 
configurations for the VMs. The search 
algorithms use the ”what-if” mode of the query 
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optimizer's cost model [6]. The “what-if” mode 
can be expressed as ``what will be the estimated 
cost of the given query workload under the 
candidate resource allocation.’’ The search 
algorithm modifies the query optimizer's tuning 
parameters using the calibration process. The 
overall optimization process would ideally profile 
the intensivity of workload (e.g., CPU-intensive 
or non CPU-intensive) and guide the VDA to 
allocate the suitable amounts of resources to each 
VM.  The VDA uses a heuristic greedy algorithm, 
which suffers from the problem of being trapped 
in local optima [7]. A new search algorithm based 
on PSO is proposed in this paper to reduce 
trapping in local optima, as will be described in 
Section V. The next section motivates the 
proposed search algorithm by analyzing the 
greedy search algorithm used in the VDA. 

IV. GREEDY SEARCH ALGORITHM 

In this section, we present the greedy search 
algorithm; follow that by studying the 
effectiveness of some of its parameters (the share 
values); and present a mathematical analysis of 
the effect of the share values on reaching an 
optimal solution. 

A. Greedy Search Algorithm 

    The VDA uses a greedy search algorithm to 
decide on increasing and decreasing the amounts 
of resources allocated to VMs. The allocation is 
decided based on estimating the cost of the input 
workloads [7]. In each iteration of the greedy 
algorithm, a small fraction (called a share) of a 
resource is de-allocated from the VM that will get 
hurt the least and allocated to the VM that will 
benefit the most. We note that by varying the 
share values, it is possible to  obtain better 
solutions (less cost) than with fixed share values 
as used in [7]. This is illustrated in the next 
subsections. 

B. Effect of Share values in Greedy Search 

Algorithm 

In this section, we study the effect of the share 
values on the feasibility and speed of reaching an 
optimal solution. We noticed that for many 
problem instances, it is possible to reach an 
optimal result with more than one setting of the 
share values. In such cases, large values result in 
faster convergence to an optimal solution. In other 
words, the greedy search algorithm would benefit 
from using a share parameter value that is large, 
and thus allows for fast convergence, and at the 

same time gives a result that is as good as with 
smaller and slower-converging shares.  

To illustrate the above-described effect of the 
share parameter,  the greedy algorithm was run 
using two TPC-H workloads, which will be 
described later in Section VI, for 100 different 
share values starting from 0.1% to 10%.  As 
shown in Figure 2, the same cost can be reached 
using different share values. Among these values, 
higher share values result in faster convergence. 
So, we need to obtain the optimal share value by 
exploring the relationship between the 
configurations calculated using theses share 
values. 

 
Fig. 2: Optimal cost can be reached using multiple share values. 

Experiment was done using two virtual machines running two different 
workloads 

C. Optimal Share Value 

For the greedy algorithm to reach an optimal 
configuration, the difference %�  between the 
default configuration %&'_!
 '�  and optimal 
configuration 	
#�_!
 '�of each VMi has to be a 
multiple of the share value. The previous 
statement is a direct implication of how the 
greedy search algorithm works. Having a share 
value that is the greatest common divisor (GCD) 
of all the difference values di, ensures that the 
optimal configuration is reached and speeds up 
the convergence time. That is, the GCD of 
differences di is considered the optimal share 
value that results in the fastest convergence to an 
optimal estimated cost amongst all other share 
values. Hence, the GCD of differences for N 
VMs’ optimal configurations is described as 
follows:   
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%� = �)��%&'_!
 '� − 
#�_!
 '�)            (6) 


#����+_�ℎ��& = GCD�%�, %�, … . . , %0�    (7) 

To illustrate the above definitions using an 
example, suppose that the optimal CPU 
configurations for four VMs are 30.8%, 22.2%, 
29.3%, and 17.7%. For four VMs, and the default 
CPU configuration is 25%. Thus, 

%� = 5.8	, %� = 2.8	, %4 = 4.3	, %7 = 7.3 

� %	
#����+_�ℎ��& = GCD�5.8	,2.8	,4.3	,7.3� = 0.1. 

So, 0.1 is the optimal share value which can cause 
the greedy algorithm to reach optimal 
configurations as fast as possible.  

For another example, Figure 2 depicts that the 
optimal estimated cost was reached using 
multiple share values (0.1, 0.2, 0.4, 0.5, 0.8, 1.0, 
1.6, 2.0, 4.0, and 8.0), and Figure 3 shows the 
CPU configurations that correspond to all share 
values. The default CPU configuration for the two 
VMs used is 50%, and the optimal CPU 
configurations are 58% and 42% for VM1 and 
VM2, respectively. That is, 

 

%� = 8	, %� = 8	� %	
#����+_�ℎ��& = GCD�8,8� = 8 

 

On the other hand, different share values result 
in different convergence time for the greedy 
algorithm. For example, the share values 0.1, 0.2, 
0.4, 0.5, 0.8, 1.0, 1.6, 2.0, 4.0, and 8.0 result in 
reaching the optimal configuration after 80, 40, 
20, 16, 10, 8, 5, 4, 2 and 1 iterations of the greedy 
algorithm, respectively. The largest share value, 
among all share values that guarantee reaching 
the optimal solution, results in the fastest running 
time of the greedy algorithm. 

 

 
Fig. 3  VM Configurtions reached using different share values for two 

VMs. The optimal configuration is 58% and 42%. 

D. Effect of Search Space Size 

One can think of running the greedy algorithm 
exhaustively for a large set of share values and 
reporting the minimum cost that is reached over 
all the exhaustive runs. This exhaustive greedy 
algorithm would be affected by the size of the 
search space, the share values in this case. When 
the search space of share values is larger (i.e., 
with finer granularity of share value), the reached 
estimated cost is lower, and the running time is 
higher. Figure 4 depicts the effect of enlarging the 
search space of share values for two workloads 
running on two VMs. The estimated cost 
decreases with increasing search space until share 
value granularity is low enough to include a value 
that is a common factor of all allocation 
differences di, at which point increasing the 
search space merely results in increased running 
time without any improvement in estimated cost. 

The result in Figure 4 is for one resource only 
(the CPU), and thus, the greedy algorithm has one 
share parameter. Increasing the number of 
resources results in exponentially larger search 
space for the share values and a corresponding 
increase in running time. We need another 
algorithm that reaches optimal share values 
efficiently even with more than one resource. In 
our proposed algorithm, we use the particle 
swarm optimization search technique to escape 
from local optima and to minimize the running 
time. 
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Fig. 4  Different Search Spaces for Exhaustive Greedy for two workloads  

V. GREEDY PARTICLE SWARM 

OPTIMIZATION (GPSO) 

In this section, we present our proposed hybrid 

search algorithm, namely the Greedy Particle 

Swarm Optimization (GPSO). We start by 

describing the particle swarm optimization and 

follow that by a description of the proposed 

hybrid algorithm. 

A. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is one of 
the modern evolutionary algorithms used to 
explore the search space of a given problem [25]. 
PSO simulates the social behavior of individuals 
(particles) of certain kinds of animals (e.g., birds’ 
flocks and fish schools). In PSO, the population of 
particles is typically called a swarm, whereas each 
candidate solution can be thought of as a particle 
within the swarm. The idea of PSO is based on 
introducing the observation of swarming 
movement to the field of evolutionary computation 
[29]. Each particle moves in a D-dimensional 
space (D represents the number of decision 
variables). Each particle is thus described by a 
tuple of D-dimensional vectors �X<, V<, P<, G<� , 
which (respectively) represent the current 
position,the velocity,the personal best position that 
the particle has achieved, and the global best 
position that is tracked by the entire swarm along 
each of the D dimensions. 

Initially, the PSO algorithm chooses candidate 
solutions randomly. Then, each particle moves in 
randomly-defined directions based on best of itself 

and of its peers. During each iteration, the particles 
evaluate their positions towards a goal. They 
update their own velocities using a weighted 
function of globally best positions and their 
previous positions and then use these velocities to 
adjust their new positions. The used equations to 
update the velocity and position along each 
dimension for each particle are: 

?�@�� + 1� = B?�@��� + !����#)&���@��� − C�@���� +
																																											!�����)&��@��� − C�@����(8) 

								C�@�� + 1� = C�@��� + ?�@�� + 1�                     (9) 

where all parameters are represented in dth 
dimension at time t, vid(t) is the velocity of ith 
particle, w.vid(t) is the inertia component 
responsible for keeping the particle moving in the 
same direction,  w�w ∈  [0.8, 1.2]) is an inertia 
weight that determines how much the previous 
velocity is preserved, xid(t) is the position of the ith 
particle, pbestid(t) is the personal best position for 
the ith particle, gbestd(t) is the globally best 
position, c1, c2 are positive acceleration 
coefficients ranging from 0 to 4, and r1, r2 are 
random numbers drawn from the uniform 
distribution U[0,1] [30]. The stopping criteria are 
that either the maximum number of iterations is 
reached or the minimum error condition is 
satisfied. An improved version of PSO, SSM-PSO, 
is used to avoid invalid-solution cases [31]. 

The parameters of PSO influence the 
optimization performance. PSO needs to predefine 
numerical coefficients (the maximum velocity, 
inertia weight, momentum factor, societal factor, 
and individual factor) and swarm size. The ability 
to globally optimize the solution relies greatly on 
the setting of these parameters. The maximum 
velocity and inertia weight are employed to 
balance global exploration and local exploitation. 
A large value of inertia weight facilitates better 
global exploration ability, whereas a small value 
enhances local exploitation capability. In other 
words, they affect the ability of escaping from 
local optima and refining global optimization. The 
societal and individual factors determine the 
ability of exploring and exploiting. The size of the 
swarm balances the requirement of global 
optimization and computational cost [32-34]. 
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B. Greedy Particle Swarm Optimization 

(GPSO)   

A hybrid of the heuristic greedy search and 
intelligent particle swarm optimization is proposed 
as a new algorithm to overcome the trapping into 
local optimum states away from global ones. We 
call this algorithm Greedy Particle Swarm 
Optimization (GPSO).  

Figure 5 depicts the idea of the proposed GPSO 
algorithm. The main idea is that the GPSO 
algorithm uses PSO technique to tune the share 
parameter of the greedy algorithm. Whereas the 
greedy module enumerates resource allocations for 
the VMs based on the estimated cost of the given 
workloads, the PSO module sends to the greedy 
module candidate shares and VM configurations 
and  receives updated VM configurations and the 
corresponding estimated cost for these 
configurations. 

 

 

 

In this setting, the particles of the PSO module 
hold candidate values for the share parameter, and 
the dimensions represent the number of resources. 
The effect of the GPSO algorithm is achieved by 
iteratively running the heuristic greedy algorithm 
with a new share computed using PSO. In each 
iteration, the heuristic greedy is started from the 
last solution (the configuration of the global best) 
reached in the previous iteration, which is 
considered as a local optimum. The GPSO 
algorithm has been implemented in the VDA 
enumerator (search) module. To evaluate each 
particle (share parameter value), the total of 
estimated costs is calculated using input workloads 
under candidate VM configuration as described in 
Eq.3. The total estimated cost serves as the fitness 
function for PSO. 

The GPSO algorithm steps are as follows: 

1) Initially, equal allocation of each resource is 
assumed as the initial configuration for all 

VMs (1/N of each resource is allocated to each 
VM). 

2) The fitness function is defined to minimize the 
cost as described in Eq. 3, and then the 
positions (share values) of the particles are 
chosen randomly. The search space includes 
all the possible fractions except the fractions 
that cause a resource allocation that is either 
greater than the maximum allocation (100%) 
or less than the minimum allocation (0%). 
These constraints reduce error occurrence and 
can be described by the following: 

F� ���� − �ℎ��& > 0 

F�C���� + �ℎ��& < 100 

Moreover, the search space boundaries 
�IJ�0, IJKL�

M are restricted in [0.001, 0.1]. 
This restriction means that each share 
parameter can be any value between 0.1% and 
10%. In this work, only one resource, CPU, is 
used (i.e., one-dimensional vectors for 
particles), and thus, GPSO is used to find a 
best particle (share value) to tune CPU 
allocation	I = �C�, C�, . . . . . , C0�. 

3) GPSO operates then in iterations. Iteratively, 
each particle evaluates its position by running 
the greedy algorithm and determines its 
personal best position. The global best share 
and VM configuration are then determined. 
The initial VM configuration of the greedy 
algorithm for each particle is the VM 
configuration which was tuned by the global 
best particle of the previous iteration. Each 
particle then updates its own velocity using its 
previous velocity, the inertia weight, its 
previous position, its personal best position, 
and best particle in terms of fitness in the 
entire population (global best position). Each 
particle then uses the calculated velocity to 
adjust its new position. 

4) After the iterations terminate, the configuration 
of the best particle so far is output as the final 
VM configuration R. 

VI. EXPERIMENTAL EVALUATION 

In this section, we present our experimental 

evaluation of the proposed GPSO algorithm. We 

start by describing the experiment setup and used 

               Fig.5 GPSO in VDA Enumerator Module 

 

 
Resource allocation Share    value         Estimated cost  

PSO 

Greedy Heuristic  
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metrics. Then, an experiment to tune GPSO’s 

swarm size is presented, followed by an 

experiment to show GPSO responsiveness to 

identical workloads. The ability of GPSO to 

escape from local minima is then demonstrated 

using an experiment, its responsiveness to 

variation of resource-intensiveness of workloads 

is demonstrated, and its speed is measured. 

Finally, a comparative study between GPSO and 

an exhaustive version of the greedy algorithms is 

described. 

A. Experiment Setup 

In our experiments we use PostgreSQL 8.4.8 as 
the DBMS running on a machine with Core2 
Duo® T5870 2.00 GHz processor, 4 GB memory, 
and CentOS 5.5 operating system. The virtual 
machine monitor used was Xen in its para-
virtualization mode [35, 36]. By using Xen, we 
aim at mimicking at a very high granularity the 
Amazon EC2 cloud, which uses Xen virtualization 
as well. 

In order to evaluate the effectiveness of the 
proposed GPSO algorithm, the TPC-H benchmark 
(with scale factor 1.0) is used to compare GPSO 
with the greedy search algorithm [7, 12, 37]. 

Our experiments compare the greedy search 
algorithm [2] to our proposed GPSO algorithm for 
allocating the CPU resource. Only the CPU-related 
parameters of PostgreSQL, namely cpu_tuple_cost 
and cpu_operator_cost, were calibrated. All 
experiments were done on a warm database. Each 
experiment was repeated ten times and averages 
are reported. 

The share parameter, which is controlled by the 
PSO part of GPSO, has an upper bound of 10%. 
The size of the search space of the proposed GPSO 
algorithm is set to either 100 or 1000 points. Each 
point in search space represents a value of the 
share parameter, which is used as a controller of 
the greedy heuristic algorithm. When the finest 
granularity of change is one tenth (0.1), a search 
space of 100 is in effect, which corresponds to the 
share values from 0.1 to 10. When the share ranges 
from 0.01 to 10 with a granularity of 0.01, a search 
space of 1000 points is created.  

The GPSO algorithm was implemented in 
JAVA. This work focuses on one resource (the 

CPU), and thus, the particles in PSO has a single 
dimension. The input to the program is the number 
of shares. For the purpose of the experiment, the 
share parameter is initially randomly generated. 
The GPSO algorithm was set to terminate after 
reaching 50 iterations or when the incremental 
change in the total estimated cost across iterations 
becomes constant for five consecutive iterations. 
The greedy algorithm starts with equal allocations 
for all VMs and with a share parameter of (5%) 
[2]. 

In GPSO algorithm, the coefficients of PSO 
component, r1 and r2, are generated randomly, c1 
= c2 = 2, and a constant momentum factor, mc = 
0.3, is adopted. The PSO component has a 
gradually decreasing inertia weight factor. The 
inertia factor w decreases linearly between 0.9 and 
0.4 as in the following equation [32]: 

B = �BJKL − BJ�0� ×
�OPQRSTUVOPQRWXY�

OPQRSTU
+BJ�0        (10) 

where Itermax is the maximum number of PSO 

iterations, Iternow is the current number of 

iterations in the running PSO, wmaxwZ[\ is the 

maximum inertia value, which equals 0.9, and 

wminwZ<]  is the minimum inertia value, which 

equals 0.4. 

B. Performance Metrics 

Four metrics were used to measure performance:  

1) The total estimated cost of workloads (in terms 
of sequential page fetches) as estimated by the 
query optimizer of PostgreSQL for default 
configurations, greedy heuristic search 
algorithm configurations, exhaustive greedy 
algorithm configurations, and GPSO algorithm 
configurations.  

2) Cost improvement, which measures relative 
performance [7, 24]. In this work, using two 
algorithms (greedy and GPSO), the formula 
for cost improvement is as follows:   

��#�
?&�& � =
^_`PabccdeV^_`Pafgh

^_`Pabccde
(11) 

where CostGreedy and CostGPSO are the total 
estimated cost under greedy and GPSO 
configurations, respectively. 

3) Normalized cost improvement measures the 
amount of improvement in cost per unit of 
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running time. It is computed as the ratio 
between cost improvement and the average 
running time (in seconds) of the search 
algorithm (either greedy or GPSO). 

 
���+�i&%_��#�
?&�& � =
�JjR_kQJQ0P

Kkl�Rm0P�JQ�
(12) 

4) Runtime overhead measures relative runtime 
as follows: 

�n ���&_
?&�ℎ&�% =
oafghVoabccde

oafgh
              (13) 

where pqrst and pqRQQ@u are the total 

runtime of GPSO and greedy algorithms, 
respectively. 

C. GPSO Experiments 

We start by describing a set of experiments on the 

proposed GPSO algorithm. 

 
1) GPSO Tuning 

 The size of the swarm in the PSO module of 
the GPSO algorithm was varied within the range 
[10-100] for two different workloads running on 
two VMs. Figure 6 plots the total estimated cost 
for all the ten experiments for different swarm 
sizes. It shows that the variation in total estimated 
cost decreases with increasing swarm size. In 
order to obtain a handle on the optimal swarm 
size, the normalized cost improvement (per unit of 
running time) was measured as will be discussed 
next.  

The GPSO algorithm performance was evaluated 
by varying the swarm size within two search 
spaces, [0.01%-10%] and [0.1%-10%], to examine 
the characteristics of optimal swarm sizes. Figure 
7 depicts the normalized cost improvement versus 
swarm size with two virtual machines. 

According to the results in Figure 7, the highest 
normalized cost was reached with a search space 
of 100 points and a swarm size of 10. As a result, 
the following experiments used the 100-point 
search space with a swarm size of 10. 

2) Identical workloads receive equal 
shares 

The aim of this experiment is to verify that the 
GPSO algorithm equally partitions the shared CPU 
resource when the workloads are identical. 
Although the GPSO algorithm changed the value 
of the share parameter (from its initial value of 

5%), the allocations and corresponding estimated 
cost did not change. 

        Figure 8 shows the estimated costs for up to 
10 VMs that run identical copies of TPC-H Q1 
query workloads. The graph plots the estimated 
costs reached by the greedy, GPSO, and the 
default configuration (equal allocations). 

 

 

Fig. 6  Effect of swarm size on total estimated cost for two VMs. 

 

Fig. 7  Effect of swarm size on normalized cost improvement for two 
search spaces. Number of VMs = 2. 

3) GPSO Escaping from local minimum 
 

In this experiment, random TPC-H workloads 
were used.  Twenty queries were generated using 
the same method described in [7]. Each workload 
consisted of a random combination of between 10 
and 20 workload units.  A workload unit can be 
either 1 copy of TPC-H query Q17 or 66 copies of 
a modified version of TPC-H query Q18 [7]. Each 
VM had one workload. Each algorithm started 
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with 2 VMs and increased by 1 VM until it 
reached 20 VMs.   

 

Fig. 8  Cost for identical workloads. 

Figure 9 shows the total estimated costs for the 
two algorithms as compared to the default equal 
allocation. The estimated cost obtained by the 
GPSO algorithm was consistently lower than the 
estimated cost obtained by the greedy algorithm. 
In other words, the GPSO algorithm outperformed 
the greedy algorithm with respect to estimated 
cost. Figure 9 also shows that the cost 
improvement ratio fluctuated with the number of 
workloads with the most obvious change when 
moving from 19 to 20 workloads. At 20 
workloads, the cost improvement decreased. 

Figure 10 plots the same results as in Figure 9 
with the cost improvement superimposed. It is 
noted that the greatest improvement happened 
when the greedy algorithm had a local optimum at 
19 workloads. The greedy algorithm could not 
improve the resource allocation and stopped in the 
initial configuration (default configuration), 
whereas the GPSO algorithm was able to escape 
the local optimum by using another share value.  

4) Responsiveness to varying CPU 
intensiveness 

 
Figure 11 illustrates the varying CPU-

intensiveness of workloads W1- W10 and the 
responsiveness of GPSO to their characteristics. 
GPSO was able to reallocate the CPU as new 
workloads jumped in. The fourth workload (W4) 
was non CPU-intensive and GPSO allocated to it 
the minimum CPU share. The eighth workload 

(W8) had the maximum CPU share, and it was a 
CPU-intensive workload.  

 

Fig. 9 Cost comparison for up to 20 random workloads. 

Fig. 10  GPSO cost improvement over greedy algorithm for up to 20 

random workloads. 

5) Runtime overhead of GPSO 
 

Figure 12 shows the runtime overhead of GPSO. 
It shows that the GPSO algorithm was slower than 
the greedy algorithm. Also, it is noticed that the 
variation in GPSO runtime was due to the 
characteristics of the workloads not to the number 
of workloads alone.  

Summary: According to our results, the GPSO 
algorithm achieved better allocations in terms of 
total cost at the expense of longer runtime. Since 
the distribution of shared resources is considered 
an off-line process in VDA, the GPSO algorithm 
is acceptable for obtaining near optimal 
configurations for VMs.  
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Fig. 11 CPU allocation for 10 workloads using GPSO. 

 
Fig. 12  Runtime overhead of GPSO (compared to greedy). 

D. Comparative Study ofthe GPSO 

Algorithm 

In this subsection, we present our comparative 

evaluation of the proposed GPSO algorithm 

against an exhaustive version (EG) of the greedy 

algorithm, which was described in Subsection D. 

 
1) Estimated Cost 

 
In this experiment, random TPC-H workloads 

were used.  Fifteen queries were generated using 
the same method described in 3). The EG 
algorithm was compared to the default equal 

allocations, greedy algorithm which used 5% as 
share value, and the proposed GPSO algorithm. 
The EG algorithm with 50 iterations outperformed 
the other algorithms as shown in Figure 13. The 
EG algorithm was able to reduce the estimated 
cost even further by increasing the number of 
iterations to 100 as depicted in Figure 14. 
However, the EG algorithm suffers from an 
exponentially increasing running time with 
increasing problem size. 

 

Fig. 13  Comparing GPSO, greedy, exhaustive greedy with 50 iterations, 

and default allocation w.r.t estimated cost. 

 

Fig. 14  Comparing GPSO, greedy, exhaustive greedy with 100 iterations, 

and default allocation w.r.t estimated cost. 

2) Running Time  
 

Figure 15 shows the runtime overhead of the 
compared algorithms. It shows that the EG 
algorithm was faster than the GPSO algorithm. 
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However, as noted in Subsection D, when search 
space grows in size, the running time of the EG 
algorithm grows exponentially. This trend is 
confirmed in the next experiment. 

3) Search Space Size 
The running time of the EG algorithm is more 

severely affected by search space size than the 
proposed GPSO. According to Figure 16, when 
the search space of the share values grows, the 
running time of the EG algorithm increased much 
faster than the proposed GPSO algorithm. 

 

Fig. 15  Comparing GPSO, greedy, exhaustive greedy with 50 iterations, 

and default allocation w.r.t running time. 

 

 

Fig. 16  The runnimg time of the exhaustive greedy algorithm grows much 
faster than GPSO with increasing search space size. 

VII. CONCLUSIONS AND FUTURE WORK 

This work builds on and improves the Virtual 
Design Advisor, a framework for resource 
partitioning of physical machine resources among 

guest virtual machines running different database 
workloads. Our contribution is a search algorithm, 
namely GPSO, which is a hybrid between particle 
swarm optimization and greedy search.  The 
proposed GPSO is motivated by the effect of the 
share parameter of the greedy algorithm on the 
feasibility and speed of convergence to an optimal 
configuration. Thus, the Exhaustive Greedy search 
algorithm studies the effectiveness of tuning the 
allocation of the shared resources and the effect of 
the share values of resources on the feasibility and 
speed of reaching an optimal solution. In other 
words, EG search algorithm benefits from using a 
share parameter value that is large, and thus allows 
for fast convergence, and at the same time gives a 
result that is as good as with smaller and slower-
converging shares.  

Using experiments with TPC-H benchmark on 
PostgreSQL database, we found that our GPSO 
algorithm was able to escape from local minima 
that otherwise trapped the greedy algorithm. Also, 
EG search algorithm was faster than the GPSO 
algorithm when the search space of the share 
values grows. 

This work can be extended on many fronts: by 
considering other resources, such as I/O and 
network bandwidth, by incorporating QoS to 
provide more flexibility and control (e.g., 
integrating a penalty to reflect the cost of SLA 
violation), and by upgrading the PSO fitness 
function with a weighted factor of cost and time to 
strike a flexible balance between performance and 
speed.  
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